雷晓光、肖俊宇课题组与合作者开发出新一代DYRK2激酶小分子抑制剂并首次揭示了该激酶对蛋白合成及钙内流的调控作用
近期,北大-清华生命科学联合中心雷晓光教授、肖俊宇研究员与南方科技大学田瑞军教授在eLife杂志上发表了最新合作研究成果“Selective inhibition reveals the regulatory function of DYRK2 in protein synthesis and calcium entry”。该工作报道了新一代高活性、高选择性DYRK2激酶小分子抑制剂的开发,以及利用该抑制剂作为工具分子通过化学生物学手段首次揭示了该激酶对蛋白合成及钙内流的关键调控作用。
人体双特异性酪氨酸-磷酸化调控激酶DYRKs是进化保守的激酶家族,以对其自身的酪氨酸残基和其他蛋白的丝氨酸/苏氨酸位点具有激酶活性为主要特点(Soundararajan et al., 2013)。DYRKs属于丝氨酸/苏氨酸CMGC激酶家族,共有五个成员。DYRK2是DYRKs家族的主要成员之一,但其生理功能尚未被完全揭示。近期研究表明双特异性酪氨酸磷酸化调控激酶2(DYRK2)是一个蛋白酶体调控激酶(Guo et al., 2016)。抑制DYRK2激酶能够显著降低蛋白酶体活性,导致小鼠异种移植模型中肿瘤细胞周期进展受阻、生长减缓(Banerjee et al., 2018)。
在前期研究中,雷晓光、肖俊宇课题组与合作者报道了DYRK2特异性小分子抑制,LDN192960 (Banerjee et al., 2019)。晶体结构解析和生化研究揭示了LDN192960 选择性抑制DYRK2的分子机制。LDN192960能够通过抑制DYRK2的活性而降低蛋白酶体活性,从而缓解三阴性乳腺癌和多发性骨髓瘤的进展,表明靶向DYRK2有望成为治疗这两种肿瘤的有效方案。虽然LDN192960对于DYRK2有较好的选择性和抑制性,但是它还可以抑制其他相关激酶,包括Haspin和DYRK3。
为了消除脱靶激酶的影响,本工作通过基于结构的药物设计,在基于吖啶的核心结构基础上设计、合成和评估了一系列新型吖啶类似物,并解析了11个新型小分子抑制剂与DYRK2的共晶结构。其中化合物17(C17)表现突出,对DYRK2具有纳摩级别的半抑制浓度(IC50),并对其他468个人体激酶没有明显的活性。此外,C17还有效的抑制了细胞中DYRK2的活性。因此,C17是一种高效且极具选择性的DYRK2抑制剂。
为了发现DYRK2新的生物学功能,本工作将C17作为一个特异而有效的探针,来研究哪些蛋白或信号通路受到DYRK2调控的影响。通过使用无标记的定量磷蛋白组学方法研究了C17处理后细胞磷酸化蛋白组的变化。在此,本研究通过对DYRK2的mRNA含量测序,寻找了一株在内源DYRK2基因高表达的骨髓瘤细胞系(U266)进行磷酸化蛋白质组学分析。结果表明,DYRK2参与复杂的磷酸化网络,通过直接、间接的作用调节蛋白质的磷酸化状态。在显著下调的位点中,本工作重点关注了两个重要的潜在底物蛋白,真核翻译起始因子结合蛋白1(4E-BP1)和基质相互作用分子1(STIM1)。
4E-BP1是转录过程的重要调节因子,已有研究表明是DYRK2的潜在底物(Wang et al., 2003)。本研究通过建立体外激酶活性体系,验证了DYRK2可以直接磷酸化4E-BP1上的多个位点(包括质谱鉴定到的位点Thr37),并且C17以剂量依赖性的方式抑制这些位点。此外,4E-BP1受多种激酶的共同调节,进一步研究表明,当C17与AKT、MEK抑制剂联用时,可以更高效地抑制蛋白磷酸化水平,表现出不同抑制剂之间的协同效应。总之,通过大量的体内外实验验证,结果表明4EBP1是DYRK2的直接底物,并揭示了DYRK2 抑制剂与其他激酶抑制剂联合用于癌症治疗的潜在用途。
STIM1是已知的磷酸化蛋白,其磷酸化可以调控钙库操纵的钙内流过程(SOCE)(Collins et al., 2013; Pozo-Guisado et al., 2010; Pozo-Guisado et al., 2013)。本研究同样验证了DYRK2在蛋白水平、细胞内都可以有效的磷酸化STIM1,这些结果表明STIM1中可能存在多个DYRK2磷酸化位点。据此,本研究进一步通过质谱鉴定到DYRK2作用STIM1的具体位点,包括U266磷酸化蛋白组分析中确定的Ser519和Ser521。为了进一步验证DYRK2对STIM1的磷酸化修饰的功能,通过Co-IP、FRET体系验证了DYRK2通过对STIM1的磷酸化修饰增强其与Orai1之间的结合能力,而DYRK2-D275N,STIM1-1-491以及STIM1-10M则不能,且处理C17则可以减弱STIM1和Orai1的相互作用。进一步研究证明,DYRK2磷酸化可以促进STIM1寡聚,增强与Orai1的相互作用,进而诱导SOCE过程。
本研究结合结构生物学与化学生物学方法,系统研究和开发了一系列新型DYRK2激酶小分子抑制剂。这些研究为靶向DYRK2的药物开发提供了实验数据和理论参考,也更加拓展了对DYRK2生物学功能的理解,为其后续研究供了有力的分子工具。 | 本工作中,北京大学魏田田博士、王珏博士、梁如琪博士以及南方科技大学陈文东博士为该论文的共同第一作者,北京大学雷晓光教授和肖俊宇研究员,以及南方科技大学田瑞军教授为文章的共同通讯作者。北京师范大学博士研究生陈一兰、北京大学博士研究生曾欣、杜逸飞博士、南方科技大学何岸博士、北京大学周文静博士、浙江大学郭行教授、北京大学陈晓伟研究员、北京大学王初教授以及北京师范大学王友军教授对该工作提供了帮助。本工作的晶体筛选在北京大学凤凰工程蛋白质平台完成,晶体数据收集在上海同步辐射光源和日本KEK同步辐射光源完成。该工作主要得到国家科技部重点研发计划-蛋白质机器专项,国家自然科学基金委-“生物大分子动态修饰与化学干预”重大研究计划,北京市卓越青年科学家计划,北京分子科学国家研究中心,北大-清华生命科学联合中心等科研基金的资助。
原文链接: https://elifesciences.org/articles/77696 | |
Ardito, F., Giuliani, M., Perrone, D., Troiano, G., and Lo Muzio, L. (2017). The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review). Int J Mol Med 40, 271-280.
Banerjee, S., Ji, C., Mayfield, J. E., Goel, A., Xiao, J., Dixon, J. E., and Guo, X. (2018). Ancient drug curcumin impedes 26S proteasome activity by direct inhibition of dual-specificity tyrosine-regulated kinase 2. Proceedings of the National Academy of Sciences 115, 8155-8160.
Banerjee, S., Wei, T., Wang, J., Lee, J. J., Gutierrez, H. L., Chapman, O., Wiley, S. E., Mayfield, J. E., Tandon, V., Juarez, E. F., et al. (2019). Inhibition of dual-specificity tyrosine phosphorylation-regulated kinase 2 perturbs 26S proteasome-addicted neoplastic progression. Proc Natl Acad Sci U S A 116, 24881-24891.
Collins, H. E., Zhu-Mauldin, X., Marchase, R. B., and Chatham, J. C. (2013). STIM1/Orai1-mediated SOCE: current perspectives and potential roles in cardiac function and pathology. Am J Physiol Heart Circ Physiol 305, H446-458.
Guo, X., Wang, X., Wang, Z., Banerjee, S., Yang, J., Huang, L., and Dixon, J. E. (2016). Site-specific proteasome phosphorylation controls cell proliferation and tumorigenesis. Nat Cell Biol 18, 202-212.
Manning, G., Whyte, D. B., Martinez, R., Hunter, T., and Sudarsanam, S. (2002). The protein kinase complement of the human genome. Science 298, 1912-1934.
Pozo-Guisado, E., Campbell, D. G., Deak, M., Alvarez-Barrientos, A., Morrice, N. A., Alvarez, I. S., Alessi, D. R., and Martin-Romero, F. J. (2010). Phosphorylation of STIM1 at ERK1/2 target sites modulates store-operated calcium entry. J Cell Sci 123, 3084-3093.
Pozo-Guisado, E., Casas-Rua, V., Tomas-Martin, P., Lopez-Guerrero, A. M., Alvarez-Barrientos, A., and Martin-Romero, F. J. (2013). Phosphorylation of STIM1 at ERK1/2 target sites regulates interaction with the microtubule plus-end binding protein EB1. J Cell Sci 126, 3170-3180.
Soundararajan, M., Roos, A. K., Savitsky, P., Filippakopoulos, P., Kettenbach, A. N., Olsen, J. V., Gerber, S. A., Eswaran, J., Knapp, S., and Elkins, J. M. (2013). Structures of Down syndrome kinases, DYRKs, reveal mechanisms of kinase activation and substrate recognition. Structure 21, 986-996.
Wang, X. M., Li, W., Parra, J. L., Beugnet, A., and Proud, C. G. (2003). The C terminus of initiation factor 4E-binding protein 1 contains multiple regulatory features that influence its function and phosphorylation. Molecular and Cellular Biology 23, 1546-1557.
雷晓光
北京大学化学与分子工程学院教授
北大-清华生命科学联合中心PI
邮箱:xglei@pku.edu.cn “
https://www.chem.pku.edu.cn/leigroup 研究领域:化学生物学,天然产物合成,合成生物学,创新药物研发研究兴趣:1)针对癌症、自身免疫性疾病、代谢性疾病等人类重大疾病开展转化医学研究与创新药物开发;2)利用酶催化与合成生物学手段开发更为高效的药物合成方法。1. Jianyong Du, Lixia Zheng, Peng Gao, Hang Yang, Wan-Jie Yang, Fusheng Guo, Ruqi Liang, Mengying Feng, Zihao Wang, Zongwang Zhang, Linlu Bai, Ye Bu, Shijia Xing, Wen Zheng, Xuelian Wang, Li Quan, Xinli Hu, Haosen Wu, Zhixing Chen, Liangyi Chen, Ke Wei, Zhe Zhang, Xiaojun Zhu, Xiaolin Zhang, Qiang Tu, Shi-Min Zhao*, Xiaoguang Lei*, Jing-Wei Xiong* “A small-molecule cocktail promotes mammalian cardiomyocyte proliferation and heart regeneration” Cell Stem Cell 2022, 29, 545-5582. Junxia Zhang, Ruqi Liang, Kai Wang, Wenjia Zhang, Mao Zhang, Li Jin, Peng Xie, Wen Zheng, Haibao Shang, Qingmei Hu, Jiayi Li, Gengjia Chen, Fujian Wu, Feng Lan, Lipeng Wang, Shi-Qiang Wang, Yongfeng Li, Yong Zhang, Jinghao Liu, Fengxiang Lv, Xinli Hu, Rui-Ping Xiao, Xiaoguang Lei*, Yan Zhang* “Hesperadin Is a Novel CaMKII-δ Inhibitor and Exerts Dual Functions to Both Protect Cardiac Ischemia/reperfusion Injury and Inhibit Tumor Growth” Circulation 2022, 145, 1154-11683. Lei Gao, Yike Zou, Xiaojing Liu, Jun Yang, Xiaoxia Du, Jin Wang, Xinshui Yu, Junping Fan, Mingxuan Jiang, Yuli Li, K. N. Houk*, Xiaoguang Lei* “Enzymatic control of endo and exo stereoselective Diels-Alder reactions with broad substrate scope” Nature Catalysis 2021, 4, 1059-10694. Lei Gao, Cong Su, Xiaoxia Du, Ruishan Wang, Shuming Chen, Yu Zhou, Chengwei Liu, Xiaojing Liu, Runze Tian, Liyun Zhang, Kebo Xie, She Chen, Qianqian Guo, Lanping Guo, Yoshio Hano, Manabu Shimazaki, Atsushi Minami, Hideaki Oikawa, Niu Huang, K. N. Houk, Luqi Huang*, Jungui Dai*, Xiaoguang Lei* "FAD-dependent Enzyme-Catalysed Intermolecular [4+2] Cycloaddition in Natural Product Biosynthesis" Nature Chemistry, 2020, 12, 620-6285. Wang W, Yang J, Zhang J, Liu YX, Tian C, Qu B, Gao C, Xin P, Cheng S, Zhang W, Miao P, Li L, Zhang X, Chu J, Zuo J, Li J, Bai Y, Lei X,* Zhou JM* “An Arabidopsis Secondary Metabolite Directly Targets Expression of the Bacterial Type III Secretion System to Inhibit Bacterial Virulence” Cell Host & Microbe 2020, 27, 601–6136. Sourav Banerjee, Tiantian Wei, Jue Wang, Jenna J. Lee, Haydee L. Gutierrez, Owen Chapman, Sandra E. Wiley, Joshua E. Mayfield, Vasudha Tandon, Edwin F. Juarez, Lukas Chavez, Ruqi Liang, Robert L. Sah, Caitlin Costello, Jill P. Mesirov, Laureano de la Vega, Kimberly L. Cooper, Jack E. Dixon*, Junyu Xiao*, and Xiaoguang Lei* “Inhibition of dual-specificity tyrosine phosphorylation-regulated kinase 2 perturbs 26S proteasome-addicted neoplastic progression” Proc. Natl Acad. Sci. USA 2019, 116, 24881-248917. Tan, D.; Li, Q.; Zhang, M.; Liu, C.; Ma, C.; Zhang, P.; Ding, Y.; Fan, S.; Tao, L.; Yang, B.; Li, X.; Ma, S.; Liu, J.; Feng, B.; Liu, X.; Wang, H.; He, S.; Gao, N.; Ye, K.; Dong, M.*; Lei, X.* “Trifunctional Cross-Linker for Mapping Protein-Protein Interaction Networks and Comparing Protein Conformational States” eLife 2016; 5:e125098. Dong, T.; Li, C.; Wang, X.; Dian, L.; Zhang, X.; Chen, X.; Li, L.; Cao, R.; Huang, N.; He, S. *; Lei, X.* “Ainsliadimer A selectively inhibits IKKα/β by covalently binding a conserved cysteine” Nature Commun. 2015, 6, 65229. Wang, G.*; Wang, X.; Yu, H.; Wei, S.; Williams, N.; Holmes, D. L.; Halfmann, R.; Naidoo, J.; Wang, L.; Li, L.; Chen, S.; Harran, P.; Lei, X.*; Wang, X.* “Small Molecule Activation of the TRAIL Receptor DR5 in Human Cancer Cells” Nature Chem. Biol. 2013, 9, 84-8910. Sun, L.; Wang, H.; Wang, Z.; He, S.; Chen, S.; Liao, D.; Wang, L.; Yan, J.; Liu, W.; Lei, X.*; Wang, X.* “Mixed Lineage Kinase Domain-like Protein Mediates Necrosis Signaling Downstream of RIP3 Kinase” Cell 2012, 148, 213-227
肖俊宇
北京大学生命科学学院研究员
北大-清华生命科学联合中心PI
邮箱:
junyuxiao@pku.edu.cn“
肖俊宇实验室致力于研究与人体疾病密切相关的蛋白机器。2014年回国独立组建实验室后,首先基于之前的研究积累开展了对分泌途径内新型激酶的系统研究,揭示了它们活性调节和底物识别的机制。近年来,更加聚焦对免疫球蛋白的研究,阐明了IgM分子的组装机制,揭示了IgA二聚体的结构细节及其被肺炎链球菌蛋白特异性识别的机理。自新冠疫情爆发以来,积极投身抗疫工作,阐明了一系列高活性新冠病毒中和抗体的结构,系统分析了它们的识别表位、分类特征、配对策略及对不同突变株的应答情况。1. Cao, Y.*, Wang, J., Jian, F., Xiao, T., Song, W., Yisimayi, A., Huang, W., Li, Q., Wang, P., An, R., Wang, J., Wang, Y., Niu, X., Yang, S., Liang, H., Sun, H., Li, T., Yu, Y., Cui, Q., Liu, S., Yang, X., Du, S., Zhang, Z., Hao, X., Shao, F., Jin, R., Wang, X.*, Xiao, J.*, Wang, Y.*, Xie, X.S.* (2022). Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature 602:657-663.2. Du, S., Zhang, Z., Liu, P., Xiao, T., Yisimayi, A., Huang, W., Wang, Y., Cao, Y.*, Xie, X.S.*, Xiao, J.* (2021). Structures of SARS-CoV-2 B.1.351 neutralizing antibodies provide insights into cocktail design against concerning variants. Cell Research 31:1130-1133.3. Cao, Y.*, Yisimayi, A., Bai, Y., Huang, W., Li, X., Zhang, Z., Yuan, T., An, R., Wang, J., Xiao, T., Du, S., Ma, W., Song, L., Li, Y., Li, X., Song, W., Wu, J., Liu, S., Li, X., Zhang, Y., Su, B., Guo, X., Wei, Y., Gao, C., Zhang, N., Zhang, Y., Dou, Y., Xu, X., Shi, R., Lu, B., Jin, R., Ma, Y., Qin, C.*, Wang, Y.*, Feng, Y.*, Xiao, J.*, Xie, X.S.* (2021). Humoral immune response to circulating SARS-CoV-2 variants elicited by inactivated and RBD-subunit vaccines. Cell Research 31:732-741.4. Du, S., Cao, Y., Zhu, Q., Yu, P., Qi. F., Wang, G., Du, X., Bao, L., Deng, W., Zhu, H., Liu, J., Nie, J., Zheng, Y., Liang, H., Liu, R., Gong, S., Xu, H., Yisimayi, A., Lv, Q., Wang, B., He, R., Han, Y., Zhao, W., Bai, Y., Qu, Y., Gao, X., Ji, C., Wang, Q., Gao, N., Huang, W., Wang, Y., Xie, S.X.*, Su, X.-d.*, Xiao, J.*, Qin, C.* (2020). Structurally resolved SARS-CoV-2 antibody shows high efficacy in severely infected hamsters and provides a potent cocktail pairing strategy. Cell 183:1013-1023.e13.5. Wang, Y., Wang, G., Li, Y., Zhu, Q., Shen, H., Gao, N., Xiao, J.* (2020). Structural insights into secretory immunoglobulin A and its interaction with a pneumococcal adhesin. Cell Research 30:602-609.6. Li, Y., Wang, G., Li, N., Wang, Y., Zhu, Q., Chu, H., Wu, W., Tan, Y., Yu, F., Su, X.D., Gao, N., Xiao, J.* (2020). Structural insights into immunoglobulin M. Science 367:1014-1017.7. Liang, K., Li, N., Wang, X., Dai, J., Liu, P., Wang, C., Chen, X.W., Gao, N., Xiao, J.* (2018). Cryo-EM structure of human mitochondrial trifunctional protein. Proc Natl Acad Sci U S A 115:7039-7044.8. Zhang, H., Zhu, Q., Cui, J., Wang, Y., Chen, M.J., Guo, X., Tagliabracci, V.S., Dixon, J.E., Xiao, J.* (2018). Structure and evolution of the Fam20 kinases. Nature Communications 9:1218.9. Cui, J., Zhu, Q., Zhang, H., Cianfrocco, M.A., Leschziner, A.E., Dixon, J.E.*, Xiao, J.* (2017). Structure of Fam20A reveals a pseudokinase featuring a unique disulfide pattern and inverted ATP-binding. eLife 6, e23990.10. Zhu, Q., Venzke, D., Walimbe, A.S., Anderson, M.E., Fu, Q., Kinch, L.N., Wang, W., Chen, X., Grishin, N.V., Huang, N., Yu, L., Dixon, J.E., Campbell, K.P.*, Xiao, J.* (2016). Structure of protein O-mannose kinase reveals a unique active site architecture. eLife 5, e22238.
如有侵权,请联系本站删除!