0.01值<0.05,说明较弱的判定结果,拒接假定的参数取值。
.如果P值>0.05,说明结果更倾向于接受假定的参数取值。
可是,那个年代,由于硬件的问题,计算P值并非易事,人们就采用了统计量检验方法,也就是我们最初学的t值和t临界值比较的方法。统计检验法是在检验之前确定显著性水平α,也就是说事先确定了拒绝域。但是,如果选中相同的α,所有检验结论的可靠性都一样,无法给出观测数据与原假设之间之间不一致程度的精确度量。只要统计量落在拒绝域,假设的结果都是一样,即结果显著。但实际上,统计量落在拒绝域不同的地方,实际上的显著性有较大的差异。
因此,随着计算机的发展,P值的计算不再是个难题,使得P值变成最常用的统计指标之一。
二、P值的意义
P值就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明这种情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。
总之,P值越小,表明结果越显著。但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要我们自己根据P值的大小和实际问题来解决。
理解P值,下述几点必须注意:
⑴P的意义不表示两组差别的大小,P反映两组差别有无统计学意义,并不表示差别大小。
⑵ P>α时,差异无显著意义,根据统计学原理可知,不能否认无效假设,但并不认为无效假设肯定成立。
⑶统计学主要用三种α值来与P值比较(0.1;0.05;0.01),也可以计算出确切的P值,也有人用P <0.001,至于选择哪个要看检验的应用领域。
⑷显著性检验只是统计结论。判断差别还要根据专业知识。
三、统计学家难得的共识:是时候停止滥用P值了
对于外行人很少听过的一个科学术语产生愤怒,这事听起来可能很疯狂,但它的结果意义重大。对于p值的误用会导致不良的科学风气与成果(对于这一点大家没有异议)。对一些科学领域逐渐增长的担忧,催生了这份一致声明。p值在一些领域已经成了决定研究论文是否值得出版的试金石。结果是,那些能够给出超过某个随意阈值的研究论文,更有可能被出版;同时具有更大或同等科研重要性的研究可能被扔在抽屉里,不被科学界所见。
分歧大多围绕着频率论者VS贝叶斯方法的技术争论,以及p值的补充与替代品。“分歧是巨大的。包括对于核心问题以及需要被改革的实践的不同看法”,Goodman说,“人们为此面红耳赤”。
最重要的信息之一是,p值无法告诉你,你的假设是否正确。相反,它是在你的假设之下的,你的数据的概率。这听起来很像“在你的数据之下的,你的假设的概率”,但它们不是一回事,卢森堡健康研究所的一名生物统计学家Stephen Senn说道。要理解原因,可以考虑这样一个例子,“教皇是基督徒吗?答案是肯定的”,他说。“基督徒是教皇吗?答案很可能是否定的。如果你更改了顺序,声明就不存在了”。
在非统计学者中常有的一个误解是,p值可以告诉你,某个结果“碰巧”发生的概率。这种解读绝对是错的,但你又总能一次次地看到。p值只会告诉你有关在某个假设解释下,得到你的结果的概率——它无法告知结果正确的概率,或者结果是随机发生的概率。这份声明中的第二项原则:“p值无法衡量所研究的假设正确的概率,或它们是否随机发生的概率。”
p值也无法告诉你某个影响的规模,某个证据的强度或是某个结果的重要性。尽管有这些限制,p值常被用于区分科学发现的真伪,这带来了恶劣的影响。当目标从追寻真理,变成获得符合某个随意阈值(在许多领域0.05或更小的值被认为“统计显著”)的p值的时候,研究者们倾向于在数据里垂钓,使用不同的分析直到发现什么p值合格的东西。你可以在去年早些时候我们建立的“p值黑客(p-hacking)”工具对此进行了解。
的确,许多ASA委员会成员在其评论中表示,p值不是问题所在,而是它如何被使用——“没能根据‘刻意挑选’、‘多次测试’、‘得到数据后分组’和其他带来偏差的挑选效果进行调整”,弗吉尼亚理工大学的统计哲学家Deborah Mayo 说道。当p值被当作区分结果是否显著的分类方式时,收集和分析数据的巨大努力被降级为贴标签,波士顿大学的流行病学家Kenneth Rothman说。
声明附带的20个评论展示了一些关于未来何去何从的想法。委员会的一些成员认为应该转而依靠其他测量工具,如置信区间和贝叶斯分析。其他人认为这样治标不治本。“解决方案不应是对p值进行改革或用其他统计指标/阈值进行替代”,哥伦比亚大学统计学家Andrew Gelman写道,“而是去更多接受不确定性与变化”。
如果这份声明能提炼出什么简单的结论,那就是:p值不是真理的标志,p < 0.05不是区分真假的界线。它们只是谜题中应该与上下文其他证据放在一起考虑的一部分。
本文始于一首俳句诗,它是对于这份p值文件的回复之一。这里让我们用密歇根大学生物统计学家Roderick Little的一首打油诗结束本文。
统计学里,有个规则我们真的重视:
P零点零五就出版,不然就去死!
Val Johnson说:“这已经过时,我们的研究如果不出现P零点零零五,那就啥也不是!”
内容由经管爱问整理,原作出自经管之家、CHRISTIE ASCHWANDEN(翻译:王鹏宇)
转自:斐然智达SCI学术服务
如有侵权,请联系本站删除!