研究背景
随着可持续发展在现代社会越来越重要,产品设计必须强调易于拆卸,以便重复使用和回收。在这种情况下,粘合剂不仅要发挥粘合材料的主要功能,还要具备在必要时选择性去除的能力。人们提出了各种选择性去除附着物的方法,包括热脱胶、磁性、电、化学、pH响应、基于金属离子的光固化技术。此类可粘合粘合剂不仅可有效地用于再利用或回收目的,还可用于快速组装-拆卸流程,以及多个行业的部件维修和升级。
智能手机是我们日常生活中必不可少的显示设备,其多功能性和耐用性归功于不同部件的集成,每个部件都通过粘合剂粘合在一起,执行指定的功能。随着可折叠手机等外形各异的设备的出现,对多功能粘合剂的需求也随之增加。因此,粘合剂不仅要粘合单个元件薄膜,还必须具有应力消散特性,同时兼顾柔韧性和弹性,提供光学透明度和清晰度,确保高湿度,并具有耐热性,在某些情况下甚至还要具有紫外线(UV)阻挡能力。值得注意的是,平板电脑等大型显示器的层压故障会大幅提高生产成本。为了最大限度地降低成本,必须将粘合剂从昂贵的部件上剥离以方便重复使用。然而,这个过程可能很复杂,而且可能会损坏元件。例如,要从可折叠智能手机显示屏上去除粘合剂层,就必须使用高温、专业机械和进一步的化学清洗来去除残留物。一种既能满足可折叠智能手机应用的所有要求,又能通过外部刺激轻松分离的粘合剂,将是解决粘合剂去除和设备可重复使用难题的最佳方案。然而,到目前为止,这种粘合剂仍未得到充分开发,市场上也没有供应。理想情况下,这种粘合剂应能用现有的光固化方法生产。
研究成果
随着人们对可持续发展的关注与日俱增,对便于拆卸和重复使用的产品的需求也随之增加最初设计用于粘合的粘合剂,现在面临着选择性去除的需求,从而实现了快速组装-拆卸和高效维护。这种需求在显示器行业尤为明显,可折叠设备的兴起要求使用专用粘合剂。Joonmyung Choi、Youngdo Kim、Min Sang Kwon教授等人提出了一种用于可折叠显示器的新型光学透明粘合剂(OCA),具有独特的紫外线刺激选择性去除功能。我们的方法在聚合物网络中加入二苯甲酮衍生物,有利于在紫外线照射下快速脱粘。我们的方法的一个主要特点是善于利用可见光驱动的自由基聚合来制造 OCA 薄膜这种方法与各种单体具有显著的兼容性,并且与二苯甲酮具有正交反应性,因此非常适合大规模生产。制得的 OCA 不仅透明度高、弹性均衡、耐反复折叠,而且在紫外线照射下的附着力也明显降低。通过将这种定制配方与战略性集成的紫外线响应元件相结合,我们提供了种有效的解决方案,在快速发展的可持续电子产品和显示器领域提高了生产效率和产品可靠性。我们的研究还有助于环保设备的制造,满足新兴技术的需求。相关研究以“Ultraviolet Light Debondable Optically Clear Adhesives for Flexible Displays through Efficient Visible-Light Curing”为题发表在Advanced Materials期刊上。
图文导读
Figure 1. a) Structure of the foldable display, showcasing the OCA that binds the UTG to the display panel, b) The conventional UV-debondable adhesive is produced with an acrylic moiety as a pendant group from a backbone, necessitating both solvent and heat for its formation, c) Proposed method of curing the UV-debondable adhesive using visible-light[1]driven polymerization (top) and conceptual illustration of the UV-debondable adhesive being cured under visible light, depicting the crosslinking from initial BP (blue) to the responsive BP (green) under UV irradiation (bottom).
Figure 2. a) Strategies and mechanisms for photocuring a UV-debondable adhesive using visible light, and for the selective removal of adhesion through UV irradiation, b) Optical properties of UV-debondable adhesive, demonstrating approximately 99% transmittance and confirming visual transparency, c) Comparison of peel strength reduction in UV-debondable adhesive after UV irradiation, based on varying BP content, d) Evaluation of peel strength, conversion, and gel fraction changes in UV-debondable adhesive with 3 mol% BP content in relation to different UV dosage, e) Rheometer measurements employed to assess the viscoelastic properties during the simultaneous UV curing of the adhesive.
Figure 3. Mechanistic understanding of the change in adhesion performance due to the photochemical reaction of BP, as depicted by all-atom molecular dynamics (MD)simulations. a) Molecular configurations of OCA/SiO2 showcasing unreacted (yellow) and reacted BP (blue). Hydrogen atoms has been omitted for clarity. b) Weight fraction representations of the free state, dangling state, and crosslinked state backbones the OCA network, c) Comparative analysis of adhesive strength before and after photochemical reaction: experimental peel strength measurements (top) and MD simulations of stress profile on the SiO2 substrate (bottom). d) Representative images showing the delamination of OCA networks from SiO2 substrates prior to UV irradiation, e) Illustration of OCA delamination post-UV irradiation, with atoms colored based on the magnitude of the von Mises strain (ϵe) experienced.
Figure 4. a) Structure of the folding test specimen, b) Z-axis displacement (ΔZ) was determined using surface profiling following the folding test, c) ΔZ values were recorded for three samples from each of the entries; sample that cracked during the folding test were identified, d) High adhesion creates a robust bond between the adhesive and UTG, potentially leading to cracks during the debonding process. In contrast, the reduced adhesion observed after UV irradiation allows for easier peeling from UTG, minimizing the likelihood of defect formation, e) Strong bonding between PI and adhesive leaves residues on the surface, while reduced adhesion due to curing results in a clean substrate without any residue, f) Proposed process for layer reusability using UV-debondable adhesive. This method allows for the complete separation of UTG and the display panel without leaving any residues, utilizing only UV light and a temporary adhesive film.
总结与展望
总之,该工作介绍了一种专为可折叠显示器定制的创新型 OCA。这种粘合剂不仅符合可折叠设备应用的基本要求,还具有一个独特的功能: 通过紫外线照射选择性去除。通过在聚合物网络中加入二苯甲酮衍生物,实现了快速、按需脱粘。这种整合通过紫外线诱导的诺里什1型反应促进了额外的交联,有效地促进了粘合剂-基材界面的脱粘。该方法的一大亮点是利用可见光驱动的自由基聚合来设计 OCA 薄膜。这种技术与各种单体具有出色的兼容性,并能与二苯甲酮发生正交反应,因此非常适合大规模生产。生产出的 OCA 薄膜性能卓越,尤其是在精确混合丙烯酸单体和 3mol的二甲酮衍生丙酸的配方下这种配方大大降低了粘附性,使 UTG 和显示面板上的粘合剂可以轻松去除,不会留下残留物。此外,制备的 OCA 薄膜还具有显著的特性,包括高光学透明度 (99%)和强大的剥离强度 (2.76 N/cm),以及平衡的应力松驰和应变恢复。其卓越的折叠耐久性显而易见,即使在经过严格的动态折叠测试后仍无缺陷。这些结果与商用可折叠显示屏所要求的严格规格非常吻合。本研究的成果为开发具有可控去除能力的先进粘合剂铺平了道路,满足了可折叠显示器和微型 LED 传输等新兴技术的需求。紫外线响应元素的战略性混合和融入为即将到来的电子/显示器行业和可持续塑料行业提供了一个提高生产效率和产品可靠性的前景广阔的解决方案。
文献链接
Ultraviolet Light Debondable Optically Clear Adhesives for Flexible Displays through Efficient Visible-Light Curing
https://doi.org/10.1002/adma.202309891
转自:“i学术i科研”微信公众号
如有侵权,请联系本站删除!