投稿问答最小化  关闭

万维书刊APP下载

超稳定、柔性、可拉伸的纳米流体离子调节复合膜

2023/9/28 10:20:24  阅读:33 发布者:

研究背景

离子输运过程在生物系统中至关重要,由于其在渗透能量转换、离子/分子分离、水处理、脱氧核糖核酸处理、超滤、离子传感器、离子界面、离子处理器等方面的潜在应用,引起了广泛的研究关注。流体在封闭纳米尺寸内的传输特性与其在体溶液内的传输特性有很大不同。当流体纳米通道的尺寸接近或低于德拜长度时,流体的离子行为在很大程度上受纳米通道壁表面电荷的支配。特别是在纳米流体通道中,带电通道壁会排斥共离子,而允许反离子通过。随着共离子浓度的降低和反离子浓度的增加,通道表面会形成双电层,从而形成反离子选择性通道。基于表面电荷效应,在低盐浓度条件下,纳米流体通道中的离子传导性可比大体积通道中的离子传导性提高几个数量级。纳米流体离子膜主要由各种二维(2D)纳片(如氧化石墨烯(GO)MXene)、纤维素纳米纤维及其复合材料组成。尽管研究取得了进展,但这些二维离子膜在稳定性方面仍面临相当大的挑战。例如,常用的GO 膜和纳米粘土膜很容易失去其片状结构,并且由于纳米片之间强大的静电排斥力而在水中物理解体。由于分子链中含有大量亲水基团,纤维素基膜很容易膨胀并逐渐溶解于水。此外,由于离子膜是在液相环境中应用的,因此膜的尺寸变化或解体会严重破坏其内部纳米通道,这会严重影响其离子传输特性,阻碍纳米流体设备的实际应用。另一个关键但经常被忽视的问题是,几乎没有膜能承受极端条件,如酸、碱和有机溶剂。例如,GO膜在高酸性或高碱性条件下几乎不透水。此外,高 pH 值会使 GOMXene 降解并关闭 GO 膜中的离子通道。总之,这些纳米流体膜很难在极端环境中应用。这就迫切需要研究开发具有高效离子传导功能、卓越稳定性和对极端环境良好适应性的纳米流体材料。

研究成果

具有高稳定离子传输特性的二维层状膜在纳米流体设备中有着多种应用;然而,其构造仍然是一个相当大的挑战。在此,西安交通大学Wenshan YuJianwei Song & 南方科技大学Yiju Li教授等人开发了一种超稳定芳纶纳米纤维/石墨复合膜,该膜具有大量一维和二维纳米约束间隙,可用于超快离子传输。这种柔性可扩展膜在水中浸泡 90天后仍具有很高的拉伸强度(115.3 MPa)。此外,芳纳米纤维石墨导体还具有表面电荷控制的离子传输特性。在氯化钾浓度为10-4 mol/L的低浓度条件下,膜的离子传导性可提高至块状导电体的 16 倍。更重要的是,即使在不同的苛刻液 (如酸、碱和乙醇) 中浸泡超过 30 天,膜的结构和离子传导性仍保持不变。分子动力学模拟显示,膜的超稳定性归功于芳纶纳米纤维内部强大的链间相互作用以及芳纶纳米纤维与石墨纳米片之间强大的界面相互作用。这项研究强调了所提出的柔性和可扩展芳纶纳米纤维/石墨复合膜的卓越结构稳定性,可用于极端工作环境下的先进纳米流体设备。相关研究以“A Superstable, flexible, and scalable nanofluidic ion regulation composite membrane”为题发表在Science Bulletin期刊上。

图文导读

Fig. 1. (a) Protein channels, ion transport, and their functions on cell membranes in biological systems. (b) ANFs and graphite flakes alternately stacked to form a layered ANF/gr membrane. (c) The Debye lengths of neighboring graphite flakes overlap to create 2D nanofluidic channels that enable the selective ion transport of positive ions. (d) Schematic of the underlying mechanism for superstability.

 

Fig. 2. (a) Schematic of the preparation of ANF. (b) TEM image of ANF. Insert: the diameter distribution of ANF. (c) Zeta potential curve of ANF. (d) AFM image of the ANF/gr composite. The graphite flake is wrapped by ANFs. Insert: suspension of the ANF/gr composite. (e) Photo images of the flexible ANF/gr membrane being bent and folded. (f, g) Cross-sectional SEM images of the ANF/gr membrane. C 1s (h) and N 1s (i) XPS spectra of the ANF/gr membrane.

 

Fig. 3. (a) Structural stability of the CNF, GO, CNF/gr, CNF/GO, and ANF/gr membranes in water. The change in thickness (b), stress-strain curve (c), and tensile strength (d) of these membranes after immersion in water for 24 h. The stress-strain curve (e) and tensile strength (f) of the ANF/gr membrane after immersion in water for several days. (g) Radar plots of performance comparison of the ANF/gr, CNF/GO, CNF/gr, GO, and CNF membranes.

 

Fig. 4. The molecular dynamics simulation model of (a) the PPTA crystals and (d) PPTA/gr composite. The PPTA chains (on the z-axis) are stacked into a ‘‘sheets[1]likestructure, with the intra-sheet direction (H bond direction) aligned with the x-axis and the inter-sheet direction along the y-axis. The central graphite layer is created perpendicular to the intra-sheet direction. Water molecules are inserted into the vacuum, and they diffuse perpendicular to the intra-sheet H bond direction. The nanostructural evolutions of PPTA crystals (b) and PPTA/gr composites (e) under varying water densities. The expansion (L/L0) of the simulation model in the x-direction relative to the vacuum condition (q = 0 g/cm3), water uptake in the PPTA crystals (c), and PPTA/gr (f) model as functions of water density (q).

 

Fig. 5. (a) Schematic of the ANF/gr-based nanofluidic device. (b) Ionic conductivity as a function of KCl concentration from 10-6 to 1 mol/L measured through the ANF/gr membrane and in a bulk solution. (c) The ionic conductivity values of the ANF/gr membrane before and after 30 days of immersion in water. Ionic conductivities of the ANF/gr membrane in HCl (d), NaOH (e), and LiCl/ethanol (f) solutions. (g) Ionic conductivities of the ANF/gr membrane in 10-4 mol/L HCl, NaOH, and LiCl/ethanol (the ANF/gr membrane is immersed in 1 mol/L HCl, NaOH, and LiCl/ethanol for 5 days before each measurement).

Fig. 6. (a) Typical I-V curves of ion transport through the ANF/gr membrane under two different concentration gradient configurations. (b) Membrane potential and current density of the ANF/gr membrane under salinity gradients. Insert: an ANF/gr device with 20 units, powering a watch. (c) Demonstration of ANF/gr slurries. (d) A large-scale ANF/gr composite membrane. (e) Schematic of the fabrication of ANF/gr fiber via wet spinning. (f) Photograph of the ANF/gr fiber. (g) Image of a single ANF/gr fiber with a load of 20 g. (h) SEM image of the ANF/gr fiber. (i) Ionic conductivities of the ANF/gr fiber in KCl solutions of various concentrations.

总结与展望

在这项研究中,作者报告了一种具有高离子传导性、超稳定性和出色机械性能的柔性可扩展ANF/gr 纳米流体膜。即使在水中浸泡三个月,ANF/gr 纳米流体膜也能表现出 115.3 MPa的高稳定拉伸强度。即使在恶劣环境 (盐酸、NaOH 和醇)中暴露一个月,ANF/gr 膜的结构仍保持完好。此外,在各种溶液(水、酸、碱和乙醇)的低浓度 (10-3 mol/L)条件下,可以观察到更高的离子电导率,这是表面电荷控制离子传输的特征。更重要的是,ANF/gr 器件具有长期稳定性,即使在相应溶液中浸泡 30 天,也能实现稳定的离子传导。根据分子动力学模拟,超稳定性可归因于 ANFS 内部强大的链间相互作用以及 ANFS与石墨纳米片之间强大的界面相互作用。此外,作者还证明了纳米流体膜可用作盐度梯度能量发生器,为电子设备供电。所制备的ANF/gr 复合膜具有优异的离子传输调节行为和超稳定性,可为纳米流体器件在各种实际应用中的应用开辟一条新途径。

文献链接

A Superstable, flexible, and scalable nanofluidic ion regulation composite membrane

https://doi.org/10.1016/j.scib.2023.08.060

转自:i学术i科研”微信公众号

如有侵权,请联系本站删除!


  • 万维QQ投稿交流群    招募志愿者

    版权所有 Copyright@2009-2015豫ICP证合字09037080号

     纯自助论文投稿平台    E-mail:eshukan@163.com