科研动态Research News | 刘亦书教授在遥感领域TOP期刊IEEE TGRS发表学术论文
2023/9/26 10:20:57 阅读:53 发布者:
以下文章来源于华南师范大学地理科学学院 ,作者地理科学学院
刘亦书教授在遥感领域TOP期刊
IEEE TGRS发表学术论文
Yishu Liu published academic papers in IEEE TGRS, a top journal in Geoscience and remote sensing
近日,华南师范大学地理科学学院刘亦书教授以第一作者身份在遥感领域TOP期刊《IEEE Transactions on Geoscience and Remote Sensing》发表题为“Integrating Knowledge Distillation With Learning to Rank for Few-Shot Scene Classification”的研究论文(https://ieeexplore.ieee.org/abstract/document/9487012)。
小样本学习在遥感图像自动解译中具有重要的意义,该论文研究小样本遥感场景分类问题。目前大多数前沿的小样本学习模型均采用所谓的“情景训练”模式——通过将训练样本分成支撑图像和查询图像,模仿了真实的小样本分类情景。然而,这些模型只判断支撑图像和查询图像是否来自同一个类别。这种二值预测过于粗略,故作者设立一个更为苛刻的训练目标,“强迫”网络模型根据支查相似度(即支撑图像和查询图像之间的相似度)对所有支撑图像进行排序,因而赋予模型更强的泛化能力。更具体地说,作者提出“保序知识蒸馏”方法,鼓励学生网络模仿教师网络的排序行为;进而利用Plackett–Luce模型,构造出一种新的蒸馏损失函数,并提出一种新的小样本学习模型——排序网络。作者在两个公开的遥感场景图像库上进行深入全面的实验,实验结果表明,排序网络的分类性能优于现有方法。
排序网络架构图
该研究得到国家自然科学基金项目(61673184)的资助。《IEEE TGRS》是地球科学和遥感领域的顶级期刊,也是IEEE地球科学与遥感协会(GRSS)的会刊,最新影响因子为8.125。
Few-shot learning (FSL) has great potential for automatic interpretation of remote sensing (RS) images. In this article, we make a study of few-shot RS scene classification. Many recently proposed FSL models adopt a very effective episode-based training procedure, where each episode is contrived to mimic the few-shot task by dividing training examples into support images and query images. However, these models can only judge whether or not a support image has the same class membership as a given query image. Such a yes-or-no prediction is rather rough, so we set a more demanding training objective, enforcing FSL models to rank support images according to support-query similarity and, hence, endowing them with better generalization ability. To this end, first, we propose ranking-preserving knowledge distillation (KD), which encourages a student network to rank support images in the same way as teacher networks. Then, integrating multi-teacher KD with learning to rank, we construct a novel distillation loss using the Plackett–Luce distributions and build a novel few-shot classification model called ranking network. Extensive evaluation on two public RS datasets shows that the ranking network achieves the state of the art by a wide margin.
转自:“生态遥感前沿”微信公众号
如有侵权,请联系本站删除!