投稿问答最小化  关闭

万维书刊APP下载

华中农大近期发表多篇高水平文章

2023/9/6 14:22:09  阅读:50 发布者:

系统解析棉花体细胞胚胎发生的基因型差异机制

近日,华中农业大学张献龙教授领衔的棉花团队在Genome Biology杂志上发表了题为“Single-cell resolution analysis reveals the preparation for reprogramming the fate of the plant stem cell niche in lateral meristems”的研究论文。该文用Jin668和不可再生材料TM-1为实验对象,结合单细胞测序技术在单细胞层面解析棉花的体细胞胚胎发生机制,通过对不同再生能力材料的对比,挖掘到决定体细胞胚胎发生能力的关键基因并构建了棉花体细胞胚胎发生的基因调控网络。

高等植物的体细胞再生方式主要有器官发生和体细胞胚胎发生,通过农杆菌介导遗传转化并体细胞胚胎发生或器官再生目前是获得转基因植物的主要方式。棉花是典型的通过体细胞胚胎发生途径实现植株再生的作物,是研究体细胞胚胎发生过程的经典模型。棉花的体细胞培养、植株再生过程非常耗时且是高度基因型依赖的,目前只有少数棉花品种(基因型)能够通过组织培养获得体细胞再生植株。如何提高棉花的体细胞再生效率、打破基因型依赖性是亟待解决的问题。Jin668是团队近年来选育的优良遗传转化受体材料,而其高转化效率和高再生能力背后的基因调控机制仍然未知。研究发现,不同的细胞类型可重编程能力不同。因此,在单细胞水平上准确分析体细胞重编程的过程,对于加深对植物再生调控机制的解析,挖掘决定植物再生能力的关键“密码”,打破棉花再生的基因型限制,具有重要的理论和实践价值。

在农杆菌介导的以棉花下胚轴为外植体的转化过程中,农杆菌主要侵染初生维管组织。体细胞经过脱分化形成愈伤组织是体细胞胚胎发生的关键步骤,棉花下胚轴对于激素诱导的响应十分迅速,在诱导3天后下胚轴两端膨大,诱导7天后部分细胞已经完成脱分化产生愈伤组织。因此,团队选择在培养基上诱导01h6h12hJin668TM-1下胚轴进行单细胞取样,根据marker基因的表达情况,最终确定7种主要的细胞类型。

1 GFPRFP报告基因在棉花下胚轴初生维管组织表达

2 棉花转化受体-下胚轴细胞类型鉴定

Jin668TM-1的细胞类型具有高度的一致性,团队发现与生长素、细胞分裂素和伤口诱导相关的基因在初生维管组织细胞类型,包括初生木质部,薄壁组织和形成层细胞中表达,因此推测分化程度较低的细胞类型对激素的诱导更加敏感,是愈伤组织形成的主要细胞类型。为进一步了解细胞命运向胚胎命运转变背后的分子机制,团队对这两个品种的相同细胞类型的基因表达情况进行了分析。研究发现,首先,在初生木质部、形成层和薄壁细胞中鉴定到许多和再生相关的差异基因(DEGs),这些差异基因在Jin668TM-1中有不同的表达模式——很多体细胞胚胎发生相关的基因在可再生材料Jin668中上调表达,而在T-1中下调表达。其中,维持生长素极性分布的基因以及生长素内流相关基因AUX/LAXJin668的形成层和薄壁组织细胞中特异表达,而一些生长素外流的基因在这些细胞类型中下调表达,这表明生长素的分布和极性转运对于细胞的脱分化和再分化有重要作用。

3 Jin668TM-1相同细胞类型中的差异表达基因

拟时序分析结果发现,Jin668TM-1的细胞有不同的生长素分布模式。和TM-1相比,Jin668初生木质部细胞有明显的生长素极性建立,更容易脱分化形成愈伤组织。同样,RNA速率结果表明,TM-1的初生木质部细胞更倾向于分化为根细胞类型而不是形成愈伤组织。以上结果表明,在棉花下胚轴体细胞胚胎发生过程中,初生维管组织细胞是形成愈伤组织的主要细胞类型,生长素是影响细胞去分化的主要因素,生长素的极性转运决定了细胞获得胚胎的能力。此外,不同细胞类型之间的细胞通讯也影响细胞的去分化。在这个过程中,一些决定性的基因影响愈伤组织的诱导和体细胞胚胎的形成。最后,团队通过敲除和过表达实验验证了生长素转运相关基因LAX2影响愈伤组织诱导并能提高胚性愈伤的形成。

博士研究生朱相潜和博士后许忠平为论文共同第一作者,华中农业大学张献龙教授和金双侠教授为论文共同通讯作者,杨细燕教授、涂礼莉教授,袁道军副教授、李波研究员、英国杜伦大学Keith Lindsey 教授等参与了本项研究。

论文链接:

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-023-03032-6

在大数据技术QTG-miner系统解析玉米雄穗分枝数遗传基础研究中取得新进展

玉米重要农艺性状的遗传解析对作物性状的遗传改良和全球的粮食安全非常重要。玉米雄穗分枝数是现代玉米育种过程中重要的选择目标,由众多微效的数量性状位点(QTL)控制。到目前为止,仍然缺乏快速批量克隆数量性状位点的方法,这严重限制了玉米雄穗分枝数性状的系统解析,一定程度上阻碍了现代玉米分子育种的发展。

826日,华中农业大学植物科学技术学院李林教授课题组在Nature Communications在线发表了题为“QTG-Miner aids rapid dissection of the genetic base of tassel branch number in maize” 的研究论文,开发了一种快速批量克隆作物数量性状位点的新方法QTG-Miner,定位并克隆了7个玉米雄穗分枝数功能基因,构建了玉米雄穗分枝数的分子调控网络,并揭示了现代玉米遗传改良过程中雄穗分枝数性状的驯化选择情况。

QTG-Miner方法的流程包括QTL的初定位、单个QTL位点分离材料的筛选和测序及利用QTG-Miner进行候选基因的挖掘三个步骤(图1)。

1 QTG-Miner的流程

利用QTG-Miner方法,作者实现了快速批量克隆玉米雄穗分枝数QTL位点,克隆了7个雄穗分枝数QTL位点的功能基因。利用EMS突变体对上述基因进行了表型验证。同时作者也对其中的两个基因(ZmKinesinZmhd-zip120)进行了基因敲除实验,进一步证实了候选基因的真实性(图2)。

2 qTBN3-1qTBN7-1候选基因的验证

进一步,作者构建了玉米雄穗分枝数的分子调控网络,GO富集分析发现网络中的基因显著富集在多个生物学途径中。新的雄穗分枝数分子调控网络为从全局层面理解雄穗分枝数性状的发育机理提供了思路,也为新基因的挖掘提供了方向(图3)。

3 玉米雄穗分枝数分子网络图谱

作者也探究了现代玉米育种过程中雄穗分枝数基因的选择历程。以lrs1基因为例,该基因在现代玉米改良的过程中受到了强烈的选择,序列多态性显著降低,优良等位基因型在玉米中的占比显著增加,也使得现代育种自交系的雄穗分枝数持续减少。

4 lrs1基因的选择分析

该研究开发了一种快速批量克隆作物数量性状位点的新方法QTG-Miner,为系统解析作物重要农艺性状的遗传基础提供了方法和思路。该方法同样适用于玉米以及其他物种的多个农艺性状,具有非常广泛的应用前景。华中农业大学博士研究生王席与李娟为论文的共同第一作者,华中农业大学李林教授为通讯作者。齐鲁师范学院路小铎教授和中国农科院李慧慧研究员对本课题提供了帮助和建议,仲恺农业工程学院齐永文教授为原始数据收集提供了帮助,中国农科院张春义研究员和齐鲁师范学院路小铎教授为构建玉米EMS诱变突变体库提供了支持。

论文链接:

https://www.nature.com/articles/s41467-023-41022-1

在水稻褐飞虱绿色高效防控方面取得新进展

近日,华中农业大学植物科学技术学院农药毒理学及有害生物抗药性团队研究成果以Redox and Near-Infrared Light-Responsive Nanoplatform for Enhanced Pesticide Delivery and Pest Control in Rice: Construction, Efficacy, and Potential Mechanisms”为题在ACS Applied Materials & Interfaces上发表。研究采用了一种创新的纳米平台,成功实现了对水稻重要害虫褐飞虱防控药剂的高效智能递送,进一步阐明了其增效机制。

纳米平台的合成及其增效机理

褐飞虱(Nilaparvata lugens)是我国水稻生产上的重要害虫,对水稻产量和品质造成严重危害。基于此,研究团队开发了一种镶嵌硫化铜的有机二氧化硅纳米复合载体,将其应用于新烟碱类杀虫剂烯啶虫胺的控制释放。硫化铜纳米颗粒可将近红外光能转化为热量,从而实现农药的快速释放和协同增效效应。同时,有机二氧化硅纳米颗粒具有丰富的孔隙结构和较大的比表面积,可高效负载农药分子,并对害虫体内谷胱甘肽作出响应。硫化铜可实现快速光热转化,纳米平台具有较高的光热转化率,在近红外光的激发下,与烯啶虫胺原药相比,纳米平台对褐飞虱田间种群和抗药性种群的毒力均显著提升。进一步发现纳米平台可显著抑制褐飞虱抗药性种群中P450基因(NlCYP6ER1NlCYP6AY1NlCYP4C76)的表达,进而提高其对杀虫剂的敏感性,研究结果为害虫抗药性的治理提供了新思路。该纳米平台在有害生物绿色高效防控方面具有巨大应用潜力。

植物科学技术学院硕士研究生宗茂为论文第一作者,何顺副教授为论文通讯作者,李建洪教授、万虎教授和马康生副教授参与了项目的指导。

论文链接:

https://pubs.acs.org/doi/abs/10.1021/acsami.3c08413

来源↓↓↓

华中农业大学官方微信(微信号:hzau_news_center

转自:iPlants”微信公众号

如有侵权,请联系本站删除!


  • 万维QQ投稿交流群    招募志愿者

    版权所有 Copyright@2009-2015豫ICP证合字09037080号

     纯自助论文投稿平台    E-mail:eshukan@163.com