投稿问答最小化  关闭

万维书刊APP下载

爆发!南农大近期发表了15篇高水平文章

2023/9/6 11:45:36  阅读:70 发布者:

农学院

智慧农业团队在秸秆还田背景下大尺度作物叶面积指数监测方面取得重大进展

植保院

陶小荣教授团队在植物NLR抗病基因激活免疫信号机制方面取得新进展

植保院

昆虫生理生化与分子生物学团队揭示异噁唑啉类和间二酰胺类等新型杀虫剂的作用靶点

资环学院

张瑞福教授课题组综述根际微生物调控植物根系构型的信号及其分子机制

生命学院

科研成果揭示酯酶SulE催化磺酰脲类除草剂去酯化脱毒的分子机制

资环学院

团队合作综述了土壤线虫调控植物健康的根际微生态机制

人工智能学院

人工智能学院计智伟课题组提出蛋白互作预测的语言模型

农学院

智慧农业团队在大尺度冬小麦高精度高分辨率遥感识别方面取得重要进展

资环学院

沈其荣院士团队明确益生元驱动根际微生物维持植物健康微生态机制

资环学院

徐国华教授团队发现钾离子转运蛋白OsHAK18介导水稻体内钾、钠循环和糖转运

农学院

棉花遗传与种质创新利用团队揭示脂质转运蛋白、神经酰胺和生长素协同促进纤维品质改良新途径

农学院

万建民院士团队在作物基因组编辑育种新技术研究中取得新进展

资环学院

赵方杰团队/中科院微生物所东秀珠团队合作研究揭示了稻田土壤二甲基砷脱甲基机制

农学院

宋庆鑫团队破译大豆完整参考基因组

农学院

智慧农业团队在秸秆还田背景下大尺度作物叶面积指数监测方面取得重大进展

近年来,南京农业大学农学院智慧农业团队对水稻秸秆还田背景下的大尺度小麦叶面积指数监测进行了深入研究。研究结果近日以RSARE: A physically-based vegetation index for estimating wheat green LAI to mitigate the impact of leaf chlorophyll content and residue-soil background”为题发表在国际著名遥感期刊《ISPRS Journal of Photogrammetry and Remote Sensing》。

绿色叶面积指数(leaf area indexLAI)在作物生长过程中是不可或缺的关键生长参数。利用卫星影像快速准确地获取大尺度小麦叶面积指数,有助于精确农业中作物肥水管理与产量估测,助力揭示全球碳循环与气候变化对作物生长的影响。目前,我国稻麦轮作面积常年在7000万亩以上,大量的不同方式的水稻秸秆返田,形成了复杂的秸秆土壤混合背景,为实时准确监测下一茬小麦生长早期(尤其封行前)的叶面积指数带来更大挑战。

该研究阐明了我国稻麦轮作区田间水稻秸秆残留对小麦冠层光谱的影响(图1),基于小麦播种前和播种后的光谱特征,结合线性光谱混合分解原理,创建了缓解秸秆-土壤背景影响的红边差值指数(Residue-Soil Adjustment Red Edge difference index, RSARE)。相比传统指数,新指数能够同时适应不同秸秆-土壤混合背景与叶片叶绿素含量变化,并且还可以适应不同背景水分变化(包括秸秆水分与土壤水分),显著提高卫星遥感影像反演早期小麦叶面积指数的精度。

研究结果表明,相比于现有植被指数构建的小麦叶面积指数反演模型,利用RSARE构建的模型无论是本地应用,还是推广到不同年份和不同生态点,均具有较高的精度与泛化性(图2)。此外,该研究还结合我国稻麦轮作区在茬口期不同田间栽培措施及其时序信息,实现了在谷歌地球引擎(Google earth engine, GEE)云计算平台上生成早期小麦叶面积指数产品的策略(如:绘制了2021-2022年江苏省小麦返青-拔节期叶面积指数空间分布,图3

南京农业大学农学院国家信息农业工程技术中心为该论文的第一完成单位,博士研究生李伟为第一作者,朱艳教授和姚霞教授为通讯作者。农学院曹卫星教授、程涛教授、李栋青年研究员,前沿交叉研究院刘守阳教授、法国国家农业食品与环境研究院Frederic Baret教授、美国西弗吉尼亚大学Timothy A.Warner教授等参与了研究工作。该工作得到了国家重点研发计划项目、国家自然科学基金等项目资助。

植物保护学院

陶小荣教授团队在植物NLR抗病基因激活免疫信号机制方面取得新进展

近日,南京农业大学植物保护学院陶小荣教授团队在国际权威学术期刊PNAS在线发表了题为《NLRs derepress MED10b and MED7 mediated repression of jasmonate-dependent transcription to activate immunity》的研究论文,该研究以番茄NLR免疫受体Sw-5b和其它多种茄科NLR免疫受体为研究模型,发现Sw-5b NLR免疫受体调控转录中介体激活茉莉酸信号通路介导抗病毒免疫,研究揭示转录中介体复合物的亚基MED10bMED7蛋白作为全新发现的茉莉酸响应基因的转录共阻遏物发挥作用,研究还揭示其它多种茄科CC类型NLRs免疫受体通过调节MED10b/MED7激活茉莉酸途径从而启动下游免疫响应的共性作用机制。

NLRNucleotide-binding leucine-rich repeat)免疫受体是植物天然免疫系统监测病原微生物侵染的关键蛋白,可直接或间接识别病原物效应因子进而激活强烈的免疫反应。NLR免疫受体也是植物中最大的一类抗病基因,被广泛应用于抗病育种。NLR免疫受体识别病原物后如何启动下游抗性信号通路,是当前植物病理学领域最重要的科学问题之一。虽然近年来科学家们已解析了NLR受体形成抗病小体的结构,但目前我们对NLR如何诱导抗病免疫仍然知之甚少。

Sw-5b是对番茄斑萎病毒(TSWV)具有免疫作用的NLR受体,其CC结构域可激活下游免疫。该课题组首先通过酵母双杂交文库筛选Sw-5b CC结构域的互作蛋白,发现转录中介体复合物亚基MED10b (Mediator of RNA polymerase II transcription subunit 10b)CC结构域互作。转录中介体复合物是连接转录因子和RNA聚合酶pol II的分子桥梁,直接调控基因的转录激活,在真核生物调控基因转录/激活的过程中发挥着核心功能。课题组敲除/沉默MED10b和其他介体复合物中间模块的亚基,包括转录介体中间模块的MED7,直接激活植物对番茄斑萎病毒的防御反应。进一步研究发现,MED10b直接与MED7相互作用,而MED7直接与JAZ蛋白相互作用,JAZ蛋白作为JA信号通路的转录阻遏因子发挥功能。MED10b-MED7-JAZ共同作用可以强烈抑制JA响应基因的表达,并且这种共抑制依赖于JAZ蛋白。MED10bMED7的敲除可以激活JA通路,并介导植物对TSWV的防御反应,而沉默中介体复合物头部和尾部模块中的亚基则不会导致JA应答基因的激活。因此,转录介体复合体中间模块中的MED10bMED7JAZs的相互作用形成JA防御信号的共辅阻遏物,抑制JA防御基因的表达,从而使植物的免疫响应处于抑制状态。

课题组研究进一步发现,Sw-5b NLR免疫受体在识别病毒效应蛋白NSm之后,通过CC结构域干扰MED10bMED7之间的相互作用,进而解除MED10b-MED7-JAZ蛋白对JA信号通路的抑制活性。Sw-5b激活后,JA信号途径的响应基因的表达水平明显上调,并且外源喷施JA后,植物对番茄斑萎病毒的抗性显著提高。因此,NLR免疫受体Sw-5b通过解除MED7/MED10b对茉莉酸激素响应途径的抑制进而激活免疫。此外,课题组还发现包括茄科helper NLR-NRCs在内的其他多种NLRsCC结构域都可以与MED10b互作,同时可以干扰MED10bMED7之间的相互作用,并激活JA防御信号的响应。因此,茄科NLR免疫受体通过调节MED10b /MED7之间的互作激活茉莉酸信号免疫通路的机制具有普遍性意义。

NINJATPLTOPLESS)是在JA途径中JAZ的辅助阻遏物。该研究揭示,除了NINJATPL,转录中介体MED10b /MED7本身就作为与JAZ直接互作的转录共阻遏物,这是先前未被鉴定的转录阻遏物,这一发现增进了对茉莉酸信号通路调控的认知。研究还揭示了茄科植物中多种NLR免疫受体蛋白通过调节中介体复合物的亚基激活茉莉酸通路从而诱导抗性的分子机制,为NLR激活下游激素免疫信号通路的机制提供了新的认识。

论文第一署名单位为南京农业大学,植物保护学院博士生吴茜为论文第一作者,陶小荣教授为通讯作者。植物病毒研究团队朱敏副教授、李佳副教授、徐毅教授和加利福尼亚大学戴维斯分校Dinesh-Kumar教授等人参与了该项研究。该研究是陶小荣团队继在Sw-5bTswNLR免疫受体如何识别病毒效应蛋白的机制取得系列进展之后(Plant Cell 2017Molecular Plant 2019New Phytologist 2021Plant Biotechnology Journal 2021; Nature 2023),进一步在NLR受体如何激活抗病毒免疫信号通路方面取得的新的突破。该研究得到国家自然科学杰出青年基金和重点国际合作等项目的资助。

原文链接:https://www.pnas.org/doi/10.1073/pnas.2302226120

植物保护学院

昆虫生理生化与分子生物学团队揭示异噁唑啉类和间二酰胺类等新型杀虫剂的作用靶点

629日,南京农业大学植物保护学院昆虫生理生化与分子生物学团队在国际生物学知名期刊PLoS Genetics 在线发表了题为“G3MTMD3in the insect GABA receptor subunit, RDL, confers resistance to broflanilide and fluralaner”的研究论文。该研究利用计算生物学、电生理和CRISPR/Cas9基因编辑技术,揭示和验证了异噁唑啉类杀虫剂氟雷拉纳和间二酰胺类杀虫剂溴虫氟苯双酰胺在昆虫离子型GABA受体中的具体作用靶点,为解析其耐药性形成机制提供了新见解。

离子型GABA受体是昆虫神经系统中最主要的抑制性神经递质受体,也是重要的杀虫剂靶标。两类传统的GABA门控氯离子通道阻断剂——环戊二烯有机氯类杀虫剂(狄氏剂、硫丹等)和苯基吡唑类杀虫剂(氟虫腈、乙虫腈等),以及两类新型的GABA门控氯离子通道变构调节剂——异噁唑啉类杀虫剂(氟雷拉纳、异噁唑虫酰胺等)和间二酰胺类杀虫剂(溴虫氟苯双酰胺、环丙氟虫胺等),均通过作用于RDL亚基而发挥杀虫活性。前期体外及体内研究揭示了RDL亚基第二跨膜区(TMD2)的丙氨酸(A2TMD2)突变是昆虫对狄氏剂(A2STMD2)或氟虫腈(A2NTMD2)产生靶标抗性的关键原因,但该位点突变并不影响重组RDL受体对异噁唑啉类或间二酰胺类杀虫剂的敏感性。后续体外研究结果表明,RDL亚基第三跨膜区第三位甘氨酸(G3TMD3)可能是上述两类新型杀虫剂重要的作用靶点。然而,长期以来体内实验数据的缺乏,阻碍了对该药靶模型的充分验证。

本研究首先通过比对节肢动物RDL亚基与脊椎动物GABA受体亚基的氨基酸序列,结合同源建模、分子对接,在RDL亚基的4TMDs中筛选出可能影响氟雷拉纳作用的12种突变。通过构建鳞翅目昆虫二化螟RDL亚基(CsRDL)突变体并进行异源表达与电生理检测,结果发现G3MTMD3突变对重组RDL受体响应氟雷拉纳的影响最为显著,几乎失去了对氟雷拉纳的响应。黑腹果蝇、意大利蜜蜂和灰飞虱的RDL亚基G3MTMD3突变体也存在相似作用,即表现为对氟雷拉纳敏感性下降显著。此外,小鼠GABA受体在相同位点的M3GTMD3突变增加了其对氟雷拉纳的敏感性。为进一步体内验证G3MTMD3突变的功能,作者选用只含单个RDL编码基因的经典模式生物——黑腹果蝇为试验对象,使用CRISPR/Cas9基因编辑技术在RDL亚基中敲入G3MTMD3突变。然而,杂交结果表明G3MTMD3突变纯合子无法存活,并导致无法获得突变纯合品系。利用黑腹果蝇的常规平衡染色体构建的杂合突变品系则对氟雷拉纳和溴虫氟苯双酰胺不具有抗性。为了解决这一难题,他们利用了携带GFP标记基因的平衡染色体重新构建了G3MTMD3杂合突变品系,以逐一探究G3MTMD3纯合突变的致死特性、产生耐药性的潜能及适合度代价。结果发现:(1G3MTMD3纯合突变体可正常孵化,但会在蛹期前死亡;(2)携带G3MTMD3纯合突变的初孵幼虫对氟雷拉纳和溴虫氟苯双酰胺均具有极高水平(>900倍)抗性;(3G3MTMD3纯合突变导致幼虫运动能力下降。

综上所述,该研究证明了异噁唑啉类杀虫剂氟雷拉纳和间二酰胺类杀虫剂溴虫氟苯双酰胺均作用于昆虫GABA受体RDL亚基G3TMD3位点,并首次揭示了昆虫对这两类新型杀虫剂的靶标抗性产生与适合度代价之间的权衡机制。

硕士毕业生张一弛和在读博士生黄秋堂为论文共同第一作者,赵春青教授为论文的通讯作者;安徽农业大学盛成旺副教授、武汉工程大学刘根炎教授、湖南省农科院植保所唐涛研究员、南京农业大学韩召军教授和英国牛津布鲁克斯大学Andrew K. Jones博士参与了该项研究。本研究由国家自然科学基金(31871995)和国家重点研发计划(2022YFD1400900)资助。

论文全文链接:https://doi.org/10.1371/journal.pgen.1010814

资源与环境科学学院

张瑞福教授课题组综述根际微生物调控植物根系构型的信号及其分子机制

近日,资环学院张瑞福教授受邀在国际知名学术期刊Journal of Experimental Botany撰写综述“Signal communication during microbial modulation of root system architecture”,系统梳理了根际微生物调控植物根系发育的信号分子,以及这些信号分子的调控途径,包括依赖于植物激素途径和不依赖于激素途径的调控分子机制。文章提出了进一步寻找既促进侧根又促进主根发育的微生物信号分子(目前的信号分子主要是促进侧根但是抑制主根伸长)、鉴定信号的根表受体等研究方向。

根系构型(Root System Architecture, RSA)是植物的重要性状,决定着植物对水分和养分的吸收。根际微生物作为植物的“第二基因组”,能够调控植物的根系构型,是促进化肥减施增效和农业绿色发展的重要因素。根际微生物通过分泌植物激素和信号分子参与或调控植物的根系发育,近年来,根际微生物调控植物根系发育的信号越来越多被鉴定,调控的分子机制和途径也逐渐被揭示。

利用根际微生物及其信号调控作物理想根系构型促进水分和养分吸收是一种有效的农业措施,其研发周期短、应用效果明显,是对作物根系育种手段的一种重要补充,预计会在农业绿色发展中发挥重要的作用。

课题组毕业博士生李宇聪和在读博士生陈玉为论文第一作者,张瑞福教授为论文通讯作者,宣伟教授和徐国华教授参与该综述撰写,该研究得到国家重点研发计划项目资助。

文章链接:

https://doi.org/10.1093/jxb/erad263

生命科学学院

科研成果揭示酯酶SulE催化磺酰脲类除草剂去酯化脱毒的分子机制

近日,国际著名期刊《Nature Communications》在线发表了南京农业大学生命科学学院研究成果“Crystal structures of herbicide-detoxifying esterase reveal a lid loop affecting substrate binding and activity”。该研究利用结构生物学解析了SulE及其酶活提高的突变体P44R与多种磺酰脲类除草剂复合物的晶体结构,揭示了SulE的催化机制及突变体P44R酶活提高的分子机制。

磺酰脲类除草剂是一类在全球范围内得到广泛应用的超高效除草剂。其作用机理是通过抑制支链氨基酸合成关键酶乙酰羟酸合酶(acetohydroxyacid synthase, AHAS)的活性而杀死杂草。部分残留期长的品种如甲磺隆、甲嘧磺隆和胺苯磺隆造成严重的作物药害和生态破坏,而部分残留期相对较短的品种如噻磺隆、苯磺隆和豆磺隆是理想的抗除草剂转基因靶标除草剂。因此,磺酰脲类除草剂降解脱毒酶基因在磺酰脲类除草剂污染生物修复及抗除草剂作物新品种培育中具有重要应用价值。酯酶SulE能够催化多种磺酰脲类除草剂的酯键断裂,生成相应的没有除草活性的酸产物。SulE对噻磺隆活性极高,但对其它品种活性很低,这限制了其应用价值。前期研究利用定向进化技术筛选到一个对多种磺酰脲类除草剂活性显著提高的突变体P44RLiu et al., 2019)。然而,SulE的晶体结构尚未解析,其催化机制和突变体P44R活性提高的分子机制还不清楚。

该研究首先利用X-射线衍射解析了野生型SulE及其与七种底物甲磺隆、甲嘧磺隆、苯磺隆、胺苯磺隆、豆磺隆、苄嘧磺隆和噻磺隆复合物的晶体结构。结构分析表明,SulE为同源二聚体,具有一个特殊的盖子环结构。该环区在单体中远离活性中心,但在二聚体中位于另一个亚基的活性中心上方(图1)。SulE具有较大的活性口袋,七种磺酰脲类除草剂以相似的方式结合,其中芳环部分插入口袋内部,而杂环部分朝向口袋外面(图2)。

为进一步阐明突变体P44R活性提高的分子机制,解析了突变体P44R与甲磺隆和豆磺隆等复合物的晶体结构。通过与野生型结构比较分析发现,突变体P44R的盖子环从活性口袋向外偏移,特别是第43-46位置的氨基酸,它们的主链从活性口袋偏移了0.94.8 Å,其中Tyr45 偏移最明显。与野生型复合物的结构相比,突变体复合物中甲磺隆和豆磺隆的苯环部分位于相似的位置,但磺酰脲桥和杂环部分经历了约90°的旋转,导致杂环占据了原来Tyr45侧链的位置,并与两侧的Ile43 Ser142 相互作用。此外,磺酰脲桥的构象旋转导致其中的羰基氧原子与Arg150 的胍基形成氢键。这些相互作用的增加使杂环在突变体P44R中结合更紧密(图3)。

综上所述,该研究解析了SulE及其突变体与底物复合物的晶体结构,揭示了SulE催化磺酰脲类除草剂水解脱毒的分子机制,发现了盖子环的灵活性不仅影响底物结合,还决定催化活性,为后续通过理性设计进一步提高SulE对各种磺酰脲类除草剂的催化活性提供理论依据。

南京农业大学生命科学学院已毕业博士生刘斌(现江西师范大学生科院教师)为论文第一作者,冉婷婷副教授和何健教授为论文的共同通讯作者。王伟武教授、黄星教授和邱吉国副教授参与了该研究。该研究得到国家自然科学基金项目(319700964227701632070092)的资助。

论文链接:https://doi.org/10.1038/s41467-023-40103-5

资环与环境科学学院

综述了土壤线虫调控植物健康的根际微生态机制

近日,资环学院以Nematodes: an overlooked tiny engineer of plant health”为题,在Trends in Plant Science期刊发表根际线虫微生态与作物健康的观点性综述论文。

线虫是数量和多样性最高的土壤动物,是根际生物的重要组成部分。先前研究多关注线虫驱动地球化学循环和环境指示方面的作用,但是忽略了它们参与调控根际微生态和驱动土壤微生物从而影响植物健康的生态功能。本文系统总结了土壤线虫-根际微生物-植物三者之间的关系,提出根际土壤线虫对植物健康的影响不仅仅包含直接作用的植物寄生线虫,以微生物为食物来源的自由生活线虫同样能通过影响根际微生物进而影响植物健康。

目前,团队在土壤自由生活线虫调控植物病原菌、有益菌和根际微生物群落等方面进行了探索研究,提出了微型土壤动物线虫驱动土壤微生物影响植物健康的潜在机制(2)。该研究表明植物病原细菌不仅对植物有致病性同时对非宿主动物也具有很高的毒性,这可能成为植物病原菌一种逃避捕食的手段。因此,线虫通过直接捕食植物病原细菌从而抑制其种群数量的可能性较低。然而,线虫能够通过间接调控微生物群落来抵御植物病原菌,例如,线虫的取食作用能够刺激拮抗菌分泌更多拮抗物质,从而间接抵御植物病原细菌。该观点性综述呼吁更多学者关注土壤动物调控根际微生态与植物健康这个研究领域,为土壤动物-微生物跨界互作调控植物健康这个方提供了新的认识,为土壤动物开启了新的研究方向。

资环学院沈其荣院士团队和胡锋教授团队合作完成该项工作。沈其荣院士团队李根博士后和韦中教授关注于根际土壤微生物与植物健康,分别为文章第一作者和通讯作者;胡锋教授团队刘婷副教授聚焦于土壤线虫的根际微生态研究,为文章共同第一和共同通讯;加拿大麦吉尔大学Joann K. Whalen教授为共同作者。该研究得到了国家自然科学基金和国家重点研发项目的支持。

全文链接:

https://www.cell.com/trends/plant-science/fulltext/S1360-1385(23)00226-1

人工智能学院

计智伟课题组提出蛋白互作预测的语言模型

721日,生物信息领域重要期刊Briefings in Bioinformatics在线发表了南京农业大学人工智能学院计智伟教授课题组的题为“HNSPPI: A Hybrid Computational Model Combing Network and Sequence Information for Predicting Protein-Protein Interaction”的研究论文。在这项工作中,研究人员借鉴了自然语言处理技术,开发了一种轻量级的蛋白质语言模型HNSPPI,用于预测蛋白-蛋白相互作用。

HNSPPI通过整合氨基酸序列信息和PPI网络的拓扑特性,综合表征任一蛋白对之间的内在关系(图1)。研究表明,HNSPPI在人类、酿酒酵母、小鼠等六个基准数据集上表现卓越,预测性能明显优于其他五种现有算法(包括DeepFE-PPIDeepPurpose等)。最后,HNSPPI模型被用于探索SARS-CoV-2-Human相互作用系统,推理出3个与病毒蛋白SM有潜在互作关系的宿主蛋白。总之,HNSPPI是一种很有前途的AI模型,可用于鉴定病毒/病原菌入侵宿主后的靶向结合蛋白。

研究人员首先开展消融实验,证明了特征融合策略的重要性。他们测试了HNSPPI集成模型、仅用Net2vec模块、仅用Seq2vec模块在六个公共数据集上的预测性能。从图2可见,HNSPPI集成模型在人类、酿酒酵母、黑腹果蝇、幽门螺杆菌等四个PPI数据集上的性能显著优于仅使用Net2vec模块或Seq2vec模块的预测模型。

进一步,研究人员在所有六个基准数据集上将HNSPPI模型与其他5种现有算法进行了性能比较。总体而言,HNSPPI 在所有测试数据集上提供了最佳性能。特别地,HNSPPI在酿酒酵母(图3)、黑腹果蝇、幽门螺杆菌等数据集上的表现显著优于其他算法。

为了展示该项研究的应用前景和可扩展性,研究者将HNSPPI模型应用于SARS-CoV-2-Human相互作用的复杂系统,并预测了与关键病毒蛋白SM有潜在互作关系的3个宿主蛋白CCNDBP1, ADAM15, MRPS35(图4A-B)。进一步,他们分析了感染Omicron毒株BA.1BA.2患者的转录组数据,暗示了这些潜在的相互作用可能与T细胞激活和适应性免疫反应相关(表1)。

综上所述,该研究提出了一种用于PPI预测的新型计算框架 HNSPPI。通过融合蛋白质序列和相互作用网络拓扑的特征信息,HNSPPI提供了跨物种的显著预测性能。与当前五种最先进的算法相比,该模型在PPI预测方面实现了卓越的性能提升。与诸多深度学习模型不同的是,HNSPPI提供了轻量级的特征提取策略,并通过简单的分类器即可实现预测。这些优势保证了HNSPPI模型的高可解释性和计算效率。总之,HNSSPPI有望在不久的将来被广泛应用于探索各种病毒-宿主相互作用系统。

本文的第一作者为南京农业大学人工智能学院硕士生谢诗婕,通讯作者为计智伟教授。谢小军博士为算法优化提供了技术支持。首都医科大学赵昕教授、南京农业大学刘斐教授、王一鸣教授、平继辉教授参与了本项研究工作。感谢南京农业大学海外高层次引进人才启动项目、江苏省自然科学基金项目、科技部外专项目、中央高校基本业务经费等项目的支持。

原文链接:

https://doi.org/10.1093/bib/bbad261

农学院

智慧农业团队在大尺度冬小麦高精度高分辨率遥感识别方面取得重要进展

近日,农学院智慧农业创新团队在国际著名遥感期刊《ISPRS Journal of Photogrammetry and Remote Sensing》发表了题为“Automated in-season mapping of winter wheat in China with training data generation and model transfer”的研究论文,报道了他们在大尺度冬小麦高精度识别与遥感制图方面的重要进展。

作物类型遥感分类产品能够提供准确的作物空间分布和种植面积信息,是区域尺度作物生长监测和生产力预测的基础底图,对于粮食安全风险评估至关重要。目前,美国、加拿大等发达国家每年定期发布当年作物分类产品,用于评估国内粮食生产和国际粮食贸易情况。与此同时,中国等广大发展中国家也在积极探索基于遥感大数据的作物制图方法,然而由于田块破碎、种植方式复杂等因素,这些方法普遍存在精度不高、效率低、普适性差等问题,大尺度、高精度的作物分类产品仍然匮乏。现有基于遥感技术的作物分类产品生产多使用机器学习方法,这些方法严重依赖地面真实数据,以训练机器学习分类器并构建作物分类模型。一般而言,地面真实数据的获取需要野外逐点调查,时间、人力、物力成本高且效率低。因此,开发一套训练数据自动化提取方法,对于大范围作物分类产品的自动化生产至关重要。此外,现有大多数作物分类产品的公开发布时间存在严重滞后性,难以满足当季作物生产精确管理的需求。

该研究综合分析了我国冬季主要地物类型及其光谱变化规律(图1),首先构建了一个冬季作物指数(winter crop index, WCI),用于增强冬季作物信号并抑制其他地物信息。通过进一步分析冬季作物和其他地物的WCI差异,提出一种格网化(1° × 1°)的自适应阈值分割算法,自动化提取冬季作物像素(图2)。此外,为了克服冬季作物关键物候期光学卫星影像缺失和主要作物光谱相似的问题,该研究进一步探索了基于合成孔径雷达(synthetic aperture radar, SAR)的冬小麦和冬油菜区分策略。结果表明,基于油菜开花期的VH极化能够最有效地区分冬小麦和冬油菜像素(图3)。通过对提取的冬小麦和其他地物像素进一步提纯和过滤,分别在20202021年获得约19万个训练样本。该研究基于遥感云计算平台,调用约14万景Sentinel-1SAR卫星)和Sentinel-2(光学卫星)影像,通过耦合自动化提取的训练样本和随机森林分类模型,首次实现了大范围冬小麦遥感分类过程的自动化,制作了世界上第一套10米分辨率中国冬小麦分类产品(ChinaWheat10)(图4 AB)。独立验证表明该产品的平均分类精度为94%,遥感估测种植面积与省级尺度统计数据的相关性极高(R2> 0.96)。与其他冬小麦分类产品相比,ChinaWheat10分类精度高5%以上,而且空间分辨率更高,空间细节更加明确,麦田识别完整度更高(图5)。

为了克服冬小麦分类产品发布不及时的问题,该研究进一步探索了基于模型年际迁移的冬小麦分类方法。基于历史年份分类模型,成功实现了20212022年冬小麦的精确识别(图4 CD),总体分类精度同样可以达到94%以上。此外,模型迁移和时序分析结果表明:在越冬期后,冬小麦分类精度可稳定在80%以上,拔节期精度可达到85%,抽穗期可达到最高识别精度(90%以上)(图6)。该研究首次提出了一种基于多源卫星遥感数据和专家知识(冬季作物主要类型和相应物候日历)的国家尺度冬小麦训练数据自动化生成方法,攻克了大范围冬小麦遥感识别缺乏训练数据的难题;通过模型迁移明确了冬小麦关键生育时期的识别精度,首次实现了高精度高分辨率全国冬小麦识别与遥感制图的自动化,研制了全球第一套10米分辨率中国冬小麦遥感分类产品,为大范围冬小麦遥感产品的业务化生产和发布奠定了基础,对于我国以及全球粮食安全监测预警具有重要价值。

该研究由南京农业大学国家信息农业工程技术中心完成,我校农学院博士研究生杨高翔为论文第一作者,朱艳教授和程涛教授为共同通讯作者。农学院曹卫星教授、姚霞教授参与了研究工作。该工作得到了国家自然科学基金创新研究群体、中央高校基本科研业务费、江苏省农业科技自主创新资金等项目资助。

论文链接:

http://doi.org/10.1016/j.isprsjprs.2023.07.004

本研究生成的全国冬小麦分类产品(ChinaWheat10):

https://doi.org/10.5281/zenodo.8119065

资环与环境科学学院

沈其荣院士团队明确益生元驱动根际微生物维持植物健康微生态机制

近日,Nature Communications在线发表了沈其荣院士团队的研究成果:Tapping the rhizosphere metabolites for the prebiotic control of soil-borne bacterial wilt disease。该研究通过解析番茄发病和健康植株的根际代谢组,挖掘潜在的益生元,并结合多组学手段明确了益生元驱动根际微生物维持植物健康的微生态机制。研究成果标志着我国土传病害防控进入益生元精准调控阶段。

基于GLM和随机森林模型的结果,该研究选择了19种根际代谢物(11种在健康样本中富集,8种在发病样本中富集)进行实验。通过检测病原菌,土壤可培养细菌组对代谢物的利用情况进一步将11种在健康样品中富集的代谢物简化为7种,并将其定义为益生元。在益生元处理中,青枯病的发病率显著降低,荧光定量结果表明细菌总量显著提升,并且细菌数量与发病率呈显著负相关。进一步使用体外和原位试验验证了益生元具有激发土壤中性微生物的能力。并定义中性微生物为与青枯菌负相关或无显著相关的土壤微生物群体。宏基因组分析结果显示,益生元添加后,中性微生物通过激发土壤碳代谢、自毒物质降解和抗生素合成等相关途径降低番茄青枯病。研究探索了从根际土壤中挖掘活性代谢物作为益生元的新途径,并通过利用益生元定向培育“中性微生物”来防控土传青枯病的爆发。

资环学院钟山青年研究员文涛和在读博士生谢鹏昊为论文第一作者,袁军副教授为通讯作者。沈其荣院士、刘洪伟博士、Lauren HaleBrajesh K. SinghGeorge A. Kowalchuk等指导了该项研究。本小组刘婷、赵梦丽、杨盛蝶、牛国庆参与了该项研究。该研究获得了国家自然科学基金重大项目、面上项目、江苏省优秀青年基金、江苏省“青蓝工程”等项目资助。

全文链接:https://www.nature.com/articles/s41467-023-40184-2

资源与环境科学学院

徐国华教授团队发现钾离子转运蛋白OsHAK18介导水稻体内钾、钠循环和糖转运

钾离子(K+)是植物必需、含量最为丰富的阳离子,而钠离子(Na+)与K+通常相伴存在,是植物有益但也是导致盐碱毒害的主要离子。根系吸收的K+ 通过木质部转移到地上部,其中40-90%K+又通过韧皮部从地上部回流到根部。K+ 伴随着糖和其他营养物质,调节光合产物从“源”到“库”的转运和籽粒产量。K+等无机离子和光合同化物被装载到源叶的收集韧皮部中,并在卸载韧皮部被释放。计算模型表明,K+在源叶韧皮部的装载需要依赖能量的消耗,但尚不清楚是哪种K+转运蛋白参与韧皮部中K+的循环利用。

近日,资环学院徐国华教授、余玲教授团队在Plant Physiology在线发表了题为Potassium transporter OsHAK18 mediates potassium and sodium circulation and sugar translocation in rice 的研究论文,阐明了钾转运蛋白OsHAK18在水稻体内钾、钠循环和糖分配转运中的功能。

该研究发现,OsHAK18在水稻韧皮部的伴随细胞和薄壁细胞中表达。OsHAK18突变和用自身启动子增强OsHAK18表达均不影响根系K+吸收速率,但其突变降低韧皮部汁液K+和可溶性糖的浓度及根部K+含量,增加地上部K+的相对积累量,而其增强表达则呈现相反的影响结果。与正常供K+相比,这些差异在低K+处理下尤为明显。在盐(NaCl)处理下,OsHAK18突变导致韧皮部汁液中的K+Na+浓度降低,而超表达则导致其增加。用Rb+标记的分根试验结果也表明,OsHAK18能够同时促进Rb+(K+Na+)从地上部向根部的转运。此外,增强OsHAK18表达可显著降低茎秆和叶片中的K+和可溶性糖浓度,增加分蘖数和籽粒产量及根与籽粒中K+的浓度,提高K+的生理利用效率。该研究首次证实水稻韧皮部K+装载与转运依赖于OsHAK18,研究结果不仅为深度解析植物K+循环的分子生理机制提供了新线索,同时也为水稻K+高效种质资源的选育提供了重要的候选基因。

1. 水稻OsHAK18在茎节和叶鞘中的表达部位(A),在源叶和茎节中的作用过程(B),敲除(C)和增强表达(B)分别对水稻生长和产量的影响。

资环学院博士生彭莉润为本文第一作者,余玲教授和徐国华教授为共同通讯作者。顾冕教授和已毕业的研究生肖火军,李冉,曾洋,以色列希伯来大学Nava Moran教授参与了该研究。该研究得到国家重点研发计划和国家自然科学基金项目资助。

全文链接:https://doi.org/10.1093/plphys/kiad435

农学院

棉花遗传与种质创新利用团队揭示脂质转运蛋白、神经酰胺和生长素协同促进纤维品质改良新途径

脂肪酸和脂质对植物细胞伸长具有重要作用,其功能特征涉及维持细胞结构完整性,为多种代谢过程提供能量,作为信号转导介质参与多种信号通路等。脂质转运蛋白(LTP)是一种含有疏水腔的蛋白质,这种结构特征使 LTP 蛋白能够结合和转运复杂的脂类物质。棉纤维是世界上最重要的天然纺织原料,也是植物中最长的单细胞。脂类物质的含量及组成对棉纤维发育具有重要调节作用,其中神经酰胺类脂质在棉纤维伸长时期含量最为丰富,且外源施加神经酰胺显著促进棉纤维的伸长。然而,LTP蛋白是否参与了神经酰胺的转运及其棉纤维细胞伸长的调控,其涉及的功能特征及作用机制均未见报道。

近日,南京农业大学棉花遗传与种质创新利用团队在Plant Physiology在线发表了题为“LIPID TRANSFER PROTEIN4 regulates cotton ceramide content and activates fiber cell elongation”的研究论文。该研究鉴定出一个可结合神经酰胺(Cers)的脂质转运蛋白GhLTP4,证实该蛋白参与Cers转运,可提高Cers含量并激活生长素响应通路,进而促进棉纤维细胞伸长,显著改良棉纤维品质。

该研究团队鉴定到一个在棉纤维中特异表达的脂质转运蛋白GhLTP4,亚细胞定位表明GhLTP4蛋白定位于细胞膜。进一步创制了GhLTP4过量表达及抑制表达转基因棉花材料并进行表型鉴定,发现GhLTP4过量表达和抑制表达分别导致棉纤维长度的显著增加和减少。转录组分析表明,生长素IAA含量和生长素应答途径在GhLTP4转基因株系中显著改变。脂质组学和蛋白质-脂质结合实验表明,GhLTP4Cers的结合活性最强。体外实验表明Cers作用于生长素的上游调控棉纤维伸长。研究进一步对GhLTP4的上游调控因子进行了挖掘,发现转录因子GhbHLH105通过直接与GhLTP4启动子上的E-box 元件结合,正向调控GhLTP4的表达。综上研究表明,棉纤维中特异表达的GhLTP4,其表达受GhbHLH105正调控。GhLTP4主要转运Cers并激活生长素IAA介导的纤维细胞伸长。

前人研究表明,油菜素内酯BR、独脚金内酯SL参与调控超长链脂肪酸,激活乙烯通路促进棉纤维伸长。本研究鉴定了一个在棉纤维中特异表达的脂质转运蛋白GhLTP4,明确GhLTP4参与Cers转运,显著提高Cers含量并激活生长素响应通路,促进棉纤维细胞伸长,显著改良棉纤维品质。研究结果不仅解析了脂质转运蛋白参与调控细胞伸长的功能特征,而且发现了神经酰胺和生长素协同促进细胞伸长的新途径。

2023710日,Plant Physiology在线发表了该团队揭示棉纤维细胞壁中胼胝质的代谢过程及对棉花品质性状形成的重要影响研究进展。本研究是该团队在棉纤维品质改良研究方面的又一新进展。两项研究创新的优质材料正在开展棉纤维品质的育种改良评价,用于棉纤维品质显著提升的棉花新品种研发,服务优质棉花产业需求。

南京农业大学博士研究生段宇佳和尚小光副教授为论文共同第一作者,南京农业大学郭旺珍教授为论文通讯作者。钟山青年研究员李维希博士,在读研究生何庆飞、宋晓辉,已毕业硕士研究生朱丽杰参与了部分工作。该研究得到国家重点研发计划(2022YFD1200300),江苏省重点研发计划(BE2022384),海南省三亚崖州湾科技城联合项目(2021JJLH0010)和省部共建现代作物生产协同创新中心项目资助。

论文链接:

https://academic.oup.com/plphys/advance-article-abstract/doi/10.1093/plphys/kiad431/7234914?redirectedFrom=fulltext

农学院

万建民院士团队在作物基因组编辑育种新技术研究中取得新进展

基因的定向进化通过模仿自然选择的过程,以将基因产生的蛋白功能导向自定义的目标,其过程包括突变的产生、筛选和扩增。相较于体外定向进化技术,基于CRISPR的原位定向进化技术更适用于定向进化多数作物关键基因,以达到作物改良的目的。如何创制变异类型更加丰富的饱和突变体文库是原位定向进化技术的关键。近日,万建民院士团队开发了新型的多重正交碱基编辑器MoBE和随机化多sgRNA组装技术,极大地提升了原位定向进化所需的潜在突变丰度,并获得了新的抗除草剂水稻突变植株。

研究者首先采用RNA配体招募形式的碱基编辑器构象,筛选出高效的腺嘌呤脱氨酶TadA9和胞嘧啶脱氨酶CDA1。利用T2A“自剪切”肽将nCas9 (D10A)切口酶、腺嘌呤碱基编辑模块(TadA9-N22p)和胞嘧啶碱基编辑模块(TadA9-N22p)串联在同一个Ubi-1启动子后面,构建了多重正交碱基编辑器MoBE。在新开发的嵌合RNA配体作用下,MoBE介导的A>GC>T双碱基编辑效率高达73.9%,其中两种碱基同时编辑的产物平均占比达97%。在三种不同RNA配体形式的作用下,MoBE可以在多位点上分别实现高效的ABECBEA&CBE多重编辑。同时,研究者还开发了MoBE-HF,显著降低了MoBE的脱靶风险。

为实现高通量的饱和编辑sgRNA设计,研究者开发了在线工具PlantBE-CODE (http://pgec.njau.edu.cn/plantbe-code)。以饱和突变OsACC的第34个外显子为例,利用同尾酶开发了随机化多sgRNA组装技术,并通过添加Barcode序列来追踪靶点和所招募的编辑器信息。在随机化多sgRNA文库中,每串联一个sgRNA表达模块,不同靶点和不同编辑器的组合类型便会显著增加。将MoBE和随机化双sgRNA文库相结合,原位定向进化水稻OsACC内源基因。在含1.5倍浓度高效氟吡甲禾灵(Haloxyfop)的培养基筛选压力下,获得了新的抗除草剂的突变体V1703I-W2125C-HeteroR2126T-G2127A-E2327K/W2125C-E2327K-BiallelicD1970N/W2125C-BiallelicI2139N/F2207L-Biallelic等。

MoBE和随机化多sgRNA组装技术的建立,进一步拓展了基于CRISPR的作物原位定向进化技术体系,为作物基因组编辑新种质创制和挖掘优良等位变异提供了新的工具支撑。该研究成果于20230812日在线发表于植物学知名期刊Plant Biotechnology Journal (doi: 10.1111/pbi.14156)

南京农业大学已毕业硕士生张傲、在读博士生单调风和孙岩为本文共同第一作者,万建民院士和李超教授为共同通讯作者。南京农业大学刘裕强教授、吴玉峰教授、董小鸥教授、江玲教授和中国科学院遗传与发育生物学研究所王延鹏研究员等也参与了部分研究工作。该研究得到农业农村部、江苏省前沿引领技术基础研究专项、海南省崖州湾种子实验室和中国科协等项目资助。

原文链接:https://onlinelibrary.wiley.com/doi/full/10.1111/pbi.14156

资源与环境科学学院

赵方杰团队/中科院微生物所东秀珠团队合作研究揭示了稻田土壤二甲基砷脱甲基机制

砷是一种广泛存在于环境中的有毒类金属元素,其化学形态众多,不同形态砷的生物毒性迥异。淹水还原条件有利于土壤微生物对砷的还原和甲基化,二甲基砷(DMAs)是水稻土及稻米中存在的主要有机砷形态。水稻过量积累DMAs会诱发“直穗病”(又称“旱青立病”),影响水稻结实。该生理病害在我国长江中下游稻区时有发生,尚无有效的防控措施。水稻土中有些微生物可将砷甲基化,另一些微生物可将DMAs脱甲基,构成砷的甲基化与脱甲基循环。南京农业大学资环学院赵方杰教授团队与中国科学院微生物所东秀珠研究员团队前期的合作研究表明,在淹水水稻土中,硫酸盐还原菌等厌氧微生物可将无机三价砷甲基化,产生以DMAs为主的甲基砷化物,而有些产甲烷古菌可将DMAs脱甲基(Chen et al. 2019, ISME J),但具体哪一类产甲烷古菌介导DMAs脱甲基尚不清楚。

近日,赵方杰与东秀珠团队在The ISME Journal发表了“Methylotrophic methanogens and bacteria synergistically demethylate dimethylarsenate in paddy soil and alleviate rice straighthead disease”文章,发现甲基营养型产甲烷马赛球菌(Methanomassiliicoccus)与细菌共营将DMAs脱甲基,向土壤添加产甲烷马赛球菌与梭菌的共培养液可显著降低水稻对DMAs的积累,有效缓解水稻“直穗病”。

团队首先通过从水稻土中富集不同营养型的产甲烷古菌,发现甲基营养型产甲烷古菌富集培养对DMAs的脱甲基能力较强(图1A),且产甲烷马赛球菌Methanomassiliicoccus和产甲烷八叠球菌Methanosarcina是其中主要的产甲烷古菌(图1B)。随后,从上述甲基营养型富集液中分离得到两株甲基营养型产甲烷古菌MethanomassiliicoccusluminyensisCZDD1Methanosarcina mazeiCZ1,前者为H2依赖型的甲基营养型产甲烷古菌(图1C)。添加菌株CZDD1显著加速了富集液中DMAs脱甲基过程。相反,添加菌株CZ1抑制了富集液中DMAs的脱甲基过程。进一步研究发现,五价态DMAs [DMAs(V)]需要被还原为三价态DMAs [DMAs(III)]后才能被脱甲基,产甲烷马赛球菌CZDD1可将DMAs(III)脱甲基,而产甲烷八叠球菌CZ1则不能。此外,一些厌氧细菌如梭菌也辅助参与DMAs的脱甲基过程,这些厌氧细菌通过原位发酵产生H2供给马赛产甲烷球菌生长,并且将DMAs(V)还原为DMAs(III),为产甲烷马赛球菌提供脱甲基底物(图1E)。

1. 甲基营养型产甲烷古菌富集培养对DMAs脱甲基能力(A)及该富集液中主要的产甲烷古菌组成(B);从上述富集液中分离的得到的两株甲基营养型产甲烷古菌Methanomassiliicoccus luminyensisCZDD1Methanosarcina mazei CZ1C);添加CZDD1CZ1对富集液DMAs脱甲基速率的影响(D)。细菌通过产生氢气及还原DMAs(V)协助产甲烷古菌Methanomassiliicoccus luminyensisCZDD1DMAs(V)脱甲基。

随后,本研究采用一份砷甲基化能力强的水稻土进行盆栽试验,将具有DMAs脱甲基能力的产甲烷马赛球菌CZDD1与梭菌共培养液添加至水稻土中,加速了土壤中DMAs的脱甲基过程,降低了水稻对DMAs的积累,有效缓解了水稻“直穗病”(图2)。本研究进一步比较了6个水稻土和6个旱地土壤在淹水还原条件下对DMAs脱甲基的能力,发现旱地土壤产甲烷古菌丰度较低,对DMAs脱甲基的能力显著低于水稻土。该差异可能是旱改水或水旱轮作耕作方式中容易出现水稻“直穗病”的一个重要原因。

2. 添加Methanomassiliicoccus luminyensisCZDD1Clostridium malenominatumCZB5共培养液缓解水稻直穗病。不同处理对水稻颖壳中DMAs含量(A),水稻“直穗病”发病率(B)及水稻结实率(C)的影响。

本研究结果揭示了稻田土壤中DMAs脱甲基的功能微生物及脱甲基途径与机制,并为防控水稻“直穗病”提供理论依据和有效措施。南京农业大学资环学院副教授陈川与中国科学院微生物研究所李凌燕助理研究员为该文章共同第一作者,赵方杰教授与东秀珠研究员为论文通讯作者。本项目研究得到了国家自然科学基金和中央高校基础科研经费的资助。

参考文献:

Chen C, Li L, Huang K, Zhang J, Xie WY, Lu Y, Dong X, Zhao FJ. 2019. Sulfate-reducing bacteria and methanogens are involved in arsenic methylation and demethylation in paddy soils. The ISME Journal13, 25232535.

文章链接:https://www.nature.com/articles/s41396-023-01498-7

农学院

宋庆鑫团队破译大豆完整参考基因组

大豆是世界重要的粮油饲兼用作物,中国是全球最大的大豆消费国和进口国,近年来大豆供需失衡成为我国农业的重大“卡脖子”问题。基于基因组信息,克隆和解析重要农艺性状关键调控基因对于培育高产优质大豆新品种至关重要。2010年,大豆品种Williams 82的基因组被破译,成为首个大豆参考基因组。随后该基因组被多次更新,已成为广泛应用的大豆参考基因组,极大推动了大豆重要农艺性状的解析和分子育种。然而,该基因组仍存在数千个缺口。大豆完整基因组图谱的绘制不仅有助于优异基因的克隆,对复杂区域如着丝粒和端粒的研究也具有重要意义。

南京农业大学宋庆鑫团队此前利用大豆Williams 82品种,构建了世界上第一个覆盖全基因组且突变信息明确的大豆公开突变体库,并已免费向国内大豆科研团队发放2万余份突变体种质(Zhang, et al., 2022)。近日,该团队以大豆Williams 82为材料,整合PacBio HiFiONT超长测序和Hi-C技术,成功组装了第一个端粒到端粒无缺口的大豆基因组(Wm82-NJAU)。研究结果以题为“A telomere-to-telomere gap-free assembly of soybean genome”发表于Molecular Plant杂志。

与之前发表的William 82基因组(Wm82-v4.0)相比,Wm82-NJAU基因组填补了之前所有的染色体缺口,且包含所有20个着丝粒、40个端粒序列信息(图1)。新组装了~72 Mb的基因组序列,超过50%的新组装序列位于端粒和着丝粒区域。此外,该基因组也校正了已发表基因组中29个倒位和379个易位区域。

对大豆端粒和着丝粒的研究发现,超过95%的端粒和着丝粒区域由转座子组成。其中,超过90%的着丝粒序列为Gypsy逆转录转座子,90%以上的端粒序列为Mutator DNA转座子(图2A)。与之相对应的,着丝粒和端粒区域均呈现较高的DNA甲基化水平(图2B)。真核生物的着丝粒由重复序列组成,基于从头预测,该研究鉴定到大豆13号染色体着丝粒特异的未发表过的重复序列GmCent-3。相比于已知的GmCent-1GmCent-2, GmCent-3序列间变异更小,表明13号染色体的着丝粒形成可能晚于其他染色体(图2C,D)。

综上所述,该研究破译了第一个端粒到端粒无缺口的大豆基因组,并解析了着丝粒和端粒的遗传和表观遗传特征。结合该团队前期发表的大豆突变体库(http://www.isoybean.org/),完整的大豆参考基因组将促进大豆功能基因组学研究。南京农业大学钟山青年研究员王龙飞为文章的第一作者,宋庆鑫教授为论文的通讯作者。该研究得到了国家重点研发计划、博士后创新人才支持计划和中国博士后基金等项目资助。

参考文献:

Zhang M, Zhang X, Jiang X, Qiu L, Jia G, Wang L, Ye W, Song Q*. (2022) iSoybean: a database for the mutational fingerprints of soybean. Plant Biotechnology Journal, 20:1435-1437

原文链接:

https://www.cell.com/molecular-plant/fulltext/S1674-2052(23)00247-2

来源 | 南农新闻网

转自:iPlants”微信公众号

如有侵权,请联系本站删除!


  • 万维QQ投稿交流群    招募志愿者

    版权所有 Copyright@2009-2015豫ICP证合字09037080号

     纯自助论文投稿平台    E-mail:eshukan@163.com