顶刊RSE!陈镜明教授团队在植被指数研究上取得重要进展
2023/8/31 14:03:48 阅读:46 发布者:
近日,STEAR团队与加拿大农业部和自然资源部合作,在利用微波遥感数据进行地表植被参数反演方面取得新进展,研究成果以“A novel semi-empirical model for crop leaf area index retrieval using SAR co- and cross-polarizations”为题,发表在遥感领域顶级国际学术期刊Remote Sensing of Environment上。该论文以福建师范大学为第一署名单位,王荣副研究员为第一作者,陈镜明教授为通讯作者,研究得到国家自然科学基金青年项目和国家重点研发基金的资助。
叶面积指数(LAI),是描述植被冠层结构的参数,可直接用于监测植被的生长状况,是陆地生态系统碳、水循环模拟不可或缺的输入,是研究陆地生态系统对全球气候变化的基础。长期以来,LAI多基于光学遥感数据反演生成,但由于叶片叶绿素的对光学遥感信号的干扰,导致这些LAI产品具有一定的不确定性。微波遥感虽然可弥补光学遥感的这一缺陷,但会受到土壤特性比如湿度和粗糙度的影响。此外,传统的适用于微波遥感数据的“水-云”模型,并不适用于稀疏冠层。针对这一问题,团队将 “水-云”模型进行了理论修正,并巧妙利用多极化微波遥感数据消除土壤特性的影响,结果表明改进后的模型在稀疏植被中具有更高的LAI反演精度。研究为全球LAI产品的改进和发展提供了新的思路。
上图中,(a)和(b)分别为消除土壤湿度影响前和后,大豆冠层微波信号与LAI的相关性有显著的提升;(c)和(d)为玉米冠层。
文章链接:
https://www.sciencedirect.com/science/article/pii/S003442572300278X
转自:“生态遥感前沿”微信公众号
如有侵权,请联系本站删除!