研究背景
人类的视觉记忆是通过眼睛对周围物体的感知,并通过神经纤维传递到大脑的记忆中枢来实现的。视觉系统可以感知复杂的外部环境并做出反应,我们周围超过 80% 的信息都是通过视觉感知系统处理并传递到大脑的。人工智能(AI)和物联网(loT)的新时代呼唤由中枢神经系统(用干计算和记忆)和视觉系统(用于检测外部环境刺激的信息)组成的智能系统。这种系统应表现出低能耗和高并行处理能力,类似于人类的视觉记忆系统。
最近的研究利用图像传感器阵列实现了感知图像的识别功能。最近,新出现的光电人工突触实现了光感应和记忆功能;不过,这类器件的记忆时间通常较短。例如,基于无铅钙钛矿的各种双端和自供电光电突触器件已被成功制造出来,包括Cs3Bi2Br9和 Cs2AgBiBr6它们的记忆时间小于 70 s。为了解决存储时间短的问题,研究人员将光敏器件和非易失性电阻式随机存取存储器(RRAM,一种新兴的忆阻器,具有低能耗和高运算速度的特点采用简单的金属/绝缘体/金属器件集成到一个系统中。即使是可以通过紫外线复位的Ag/PMMA/Cs2AgBiBr6/ITO 记忆晶题管,也能实现人类视觉记忆的功能,但它不能单独用作光电探测器(PD)。因此,在人工智能、物联网和其他应用场景中,迫切需要一种类似于人类视觉记忆系统的高集成度器件。
研究成果
模仿人类的视觉记忆,需要将类似眼睛的光传感器和类似大脑的图像记忆进行多功能整合虽然人类已经实现了具有视觉记忆功能的电子设备,但这些设备需要各种元件和逻辑电路的组合。随着集成电路的发展,设备的小型化和高度集成化是必然趋势。因此,如何将视觉感知和高性能信息存储功能结合到单一器件中以实现视觉记忆仍然是一项挑战。本研究受人类视觉记忆功能的启发,复旦大学武利民&方晓生教授等人设计了一种基于钙钛矿的双功能光电探测器(PD)和忆阻器,以实现视觉感知和记忆能力。作为光电探测器,它实现了 276 mAW-1 的超高自供电响应率、4.7x1011 Jones 的高检测率 (530nm;光强度,2.34 mWcm-2)和 ~100(2V) 的高整流比。作为忆阻器,实现了超高的开/关比 (约 105)、3x10-11 W 的超低功耗、低偏压(0.15 V)和长保持时间(>7000 s)。此外,这种双功能器件还具有感知和记忆光路的能力并能以良好的周期稳定性存储数据。该器件具有感知记忆和循环可擦除记忆功能,这为在未来的多功能应用中模仿人类视觉记忆提供了新的机遇。相关研究以“Dual-functional Perovskite-based Photodetector and Memristor for Visual Memory”为题发表在Advanced Materials期刊上。
图文导读
Figure 1 a) Schematic of the human visual system when the Z shape was observed by the eyes. b)Schematic of the route of light and the corresponding track recording results (50 × 50 μm for each single pixel). c) Schematic of the photoelectric writing and the corresponding data storage results. d) Schematic of 4 × 4 arrays Au/Ag-Cs3Sb2I9-ITO (indium tin oxide films) dual-functional devices. e) The photo imaging result of the device (light intensity: 2.34 mWcm-2). f, g) The data storage and shape memory of the image before and after 60 min. h) The result of the array after reset. i) The photo imaging result of the device after resetting.
Figure 2 a) Schematic of the growth condition under different pressures (F = 60 N) and b, c)are the average thickness and size of the micro-plates under different confining pressures (0, 60, and 120 N). d) X-ray diffraction pattern of Cs3Sb2I9 micro-plates. e–h) Scanning electron microscopy image of Cs3Sb2I9 micro-plates (scale bar 100 μm) and the corresponding energy dispersive spectroscopy mappings of Cs, Sb and I i) Atomic force microscopy image corresponding to e). j) Cross sectional transmission electron microscopy (TEM) image of ITO[1]Cs3Sb2I9-Ag/Au. k, l) High-resolution TEM image and the corresponding fast Fourier transform patterns of Cs3Sb2I9.
Figure 3 a) The crystal unite cell structure. b) Heyd–Scuseria–Ernzerhof calculated band structures of Cs3Sb2I9 and c) the corresponding density of states. d) Absorption spectrum (right axis) and photoluminescence spectrum (left axis) for Cs3Sb2I9 microplates. e) the band gap of Cs3Sb2I9 obtained from the absorption spectrum. f) Valence band spectrum of Cs3Sb2I9micro-plates. g,h) Kelvin probe force microscope results of Cs3Sb2I9 microplates. i) Energy band alignment of Cs3Sb2I9 micro-plates.
Figure 4 a) Schematic diagram of Au/Ag-Cs3Sb2I9-ITO PD. And b) is the corresponding current voltage curves under dark and 530 nm light (2.34 mWcm-2) and the electroforming of the memristor. c) Current time (I-T) curves of Au/Ag-Cs3Sb2I9-ITO PD under different light intensities at 530 nm,and d) is the corresponding fitting curves. e) The responsivity and detectivity of the device. f) I-T curves with 200-cycle under 530 nm light.
Figure 5 a) Typical cuttent voltage (I-V) curves of the memristor after the electroforming process. b) Resistive switching performing of the Au/Ag-Cs3Sb2I9-ITO device of the 60-cycle sweeps. c) Retention test performance. d) Log (I) vs. log (V) plot of the I-V characteristics of Au/Ag-Cs3Sb2I9-ITO device. e)Comparation of the main parameters (on/off ratio and power consumption) of our device and others in the literature. f) current time curves of Au/Ag-Cs3Sb2I9-ITO devices before and after memory. g, h)The schematic of the resistive switching physical mechanism. g) Initial state, h) electroforming process, i) Low resistance states after SET process, and j) High resistance states after RESET process. (The thickness of the Cs3Sb2I9 micro-plate is 2.4 μm)
总结与展望
作者设计了一种具有光电检测和数据存储功能的双功能器件,它模仿了人类视觉记忆的功能。这种基于无铅Cs3Sb2I9的光电器件具有100(2V)的高整流比和在 530 nm光下 276 mAW-1 的超高自供电响应度。作为一种忆阻器,它在重复开关之前具有形成步骤、低工作电压 (0.15 V)、超高开/关比率(~105)、超低功耗(3x10-11 W)以及60次开关周期后的长期保持(>7000 s)。带有图案图像的光分布可被检测并写入视觉记忆阵列 (4x4像素),从而模仿人类的视觉记忆来捕捉和存储图像。由于电阻开关忆阻器的非易失性特点,存储的信息在视觉存储器阵列中的长期保留时间超过 60 分钟。此外,可视存储器阵列还可以通过负电压反向循环进行重新编程,这证明了其有效的重复使用性。具有光电检测和数据存储能力的双功能器件的设计为模仿人类视觉记忆提供了一种新方法,从而为视觉记忆器件在未来的电子眼和其他多功能应用中的应用创造了新的机会。
文献链接
Dual-functional Perovskite-based Photodetector and Memristor for Visual Memory
https://onlinelibrary.wiley.com/doi/10.1002/adma.202304550
转自:“i学术i科研”微信公众号
如有侵权,请联系本站删除!