投稿问答最小化  关闭

万维书刊APP下载

【催化】红外光诱导异常缺陷参与的等离子体热电子转移增强光催化制氢

2023/8/7 10:33:38  阅读:79 发布者:

高效利用可持续的太阳能是能源转型和生产中备受追求的目标。红外(IR)区域占太阳能的一半,被认为是太阳能转换的重要能源,受到人们的深入研究。然而,设计有效的催化系统来利用IR光催化分解水为氢气仍然是一个艰难的挑战。所报道的催化系统显示出光诱导载流子的快速复合、带隙窄的半导体的毒性和光生载流子转移机制不清楚等瓶颈,极大限制了太阳能-燃料转换系统的实际应用。

近日,上海理工大学廉孜超教授课题组等在国际顶级化学期刊J. Am. Chem. Soc.上发表研究文章,报告了CuS@ZnS核壳纳米晶异质结(CSNCs)在IR光区域具有强的局域表面子体等离共振(LSPR)特性,在析氢反应(HER)中显示出增强的光催化活性。时间分辨瞬态光谱揭示了异质界面上独特的“等离子体诱导缺陷参与的载流子转移”(PIDCT)。PIDCT转移路径具有高的量子效率(29.2 %)。这个CuS@ZnS CSNCs在近红外光照射下表现出较高的析氢活性和稳定性。CuS@ZnS的析氢活性26.9 μmol h1 g1CSNCs显著高于CuS NCs0.4 μmol h1 g1)和CuS/ZnS/卫星异质结(HNCs15.6 μmol h1 g1)。PIDCT可以为LSPR生成的载流子动力学的调谐提供可行的策略。

1. 新开发的PIDCT系统用于红外光响应光催化反应

制备了CuS@ZnS核壳纳米晶异质结(CSNCs)。光催化转移机制如图2所示,与传统肖特基界面上的直接等离子体电子或空穴转移途径相比,具有缺陷位点的CSNCs显示出独特的机制且量子效率为29.2 %

2. 等离子体诱导缺陷介导的载流子转移(PIDCT

这一成果近期发表在J. Am. Chem. Soc. 上,文章的第一作者是上海理工大学特聘教授廉孜超。

科研思路分析

Q:这项研究最初是什么目的?

A:局域表面等离子体共振(LSPR)是最近发展起来的新兴技术,能够克服传统半导体带隙的缺点。它在等离子体光伏和光催化方面得到了广泛的应用。新兴的铜硫族化合物,尤其是硫化铜(CuS)具有较强的LSPR效应,是一种优异的近红外(NIR)纳米材料,由于其价带中有大量的自由空穴而作为有前途的红外驱动光催化剂受到关注。最终达到高的等离子体诱导的电荷转移效率和高效近红外光催化制氢的性能。

Q:这项研究的优异之处?

A:该研究通过CuS和其他半导体受体相的异质结构纳米晶体(HNCs)的结构设计来作为等离子体激元诱导的电子或空穴转移,用于IR诱导的析氢反应(HER)催化活性。阐明了与传统肖特基界面处的直接等离子体电子或空穴转移途径相比,具有缺陷位点的工艺化CSNC显示出独特的机制。通过飞秒瞬态吸收光谱技术和电子顺磁共振测量,阐明了“等离子体诱导缺陷介导的载流子转移”(PIDCT)的机理。

Q:该研究成果未来发展方向?

A:本研究设计制备了一种新的高效光催化体系CuS@ZnS CSNCs光催化体系,其具有29.2%的高量子产率,该项工作。建立了一种独特的近红外光诱导的异常缺陷介导的等离子体电子转移(PIDCT)机制。飞秒TASEPR测量为支持这一机制提供了直接证据。PIDCT途径使HER具有高的光催化活性和稳定性。最终,光催化系统有效利用了未开发的红外太阳能,为生产氢燃料提供了一种新的途径。此外,PIDCT为有效探测太阳光提供一个新的方向,通过实际应用中的缺陷工程来实现光燃料转换系统。该发现可能为有效利用未开发的红外光铺平新的道路,并在转换全太阳光谱(如光电子)方面具有广泛的应用。

转自:“闪思科研空间”微信公众号

如有侵权,请联系本站删除!


  • 万维QQ投稿交流群    招募志愿者

    版权所有 Copyright@2009-2015豫ICP证合字09037080号

     纯自助论文投稿平台    E-mail:eshukan@163.com