人工智能 · 扩散模型综合改进 AI 蛋白质设计
2023/7/20 16:03:35 阅读:47 发布者:
深度学习推动了蛋白质结构的预测和设计,但仍需一个通用框架来克服在蛋白质设计上遇到的各种挑战。扩散模型(diffusion model)是一种生成式模拟方法,已被证明在图像和文本生成中很有用,而且似乎也适用于蛋白质设计。然而,这类模型目前的成功率并不高,产生的序列基本不能折叠成目标结构。
7 月 11 日,一项发表于《自然》(Nature)的研究描述了一种能设计新蛋白质的深度学习方法,名为 RoseTTAFold Diffusion(RFdiffusion)。该方法能生成各种功能性蛋白质,包括在天然蛋白质中从未见过的拓扑结构。
研究表明,通过微调之前报道过的 RoseTTAFold 的结构预测网络并将其整合到一个降噪扩散模型中,就能生成具有实际意义的蛋白质骨架,而蛋白质骨架决定了蛋白质的形状和功能。该模型(RFdiffusion)能测试拥有不同结构元素的设计组合,并从头开始产生蛋白质。RFdiffusion 能执行不同的任务,设计单体(蛋白质的基本组成单位)、寡聚体(多亚基聚体)和有治疗或工业应用前景的复杂结构,如结合位点。作者对数百个设计出的对称聚体、金属结合蛋白和结合蛋白的结构和功能进行了实验表征,证明了该方法的实用性。他们生成了设计的一种结合蛋白与其底物(此处为流感血凝素——在流感病毒表面发现的蛋白)的复合物并分析了其结构,发现结果与设计的模型几乎一模一样,从而证明了该方法的准确性。作者指出,RFdiffusion 是对目前蛋白质设计方法的一次综合改进,能产生总长度达600个残基的结构,复杂性和准确度都比之前更高。(Nature Portfolio)
转自:“科研圈”微信公众号
如有侵权,请联系本站删除!