Npj Comput. Mater.: 超快激光的妙手真可“点石(墨)成金(刚石)”
2023/7/19 17:19:38 阅读:41 发布者:
超快激光在控制材料的结构和性能方面有着广泛的应用。近年来,光诱导的结构相变引起了人们的极大关注。碳是自然界中最重要的元素之一,可以形成大量的有机和无机物质。其中,石墨和金刚石分别是碳在常压和高压下最稳定的结晶固相。石墨是一种具有强平面内sp2杂化共价键和弱层间范德华相互作用的原型层状晶体,而金刚石由纯sp3杂化键组成。由于巨大的动力学屏障,从石墨到金刚石的转换是极具挑战性的。除了利用高温高压条件驱动这种转变,超快激光也被发现具有诱导sp2-to-sp3键转变的潜力。实验测量发现,强激光作用后,石墨样品中表现出层间收缩和成键的特征。然而,由于当时探测技术的空间和时间分辨率相对粗糙,相变过程中的晶格演变以及非平衡载流子动力学过程都还是“点石成金”路上的未知领域,等待进一步的探索和揭密。
来自中国科学院物理研究所的孟胜、张萃研究团队,应用自主开发的高精度高性能的第一性原理非绝热动力学模拟软件TDAP,模拟了超快激光诱导石墨中sp2-to-sp3键转变的动力学过程,揭示了石墨结构相变的三个连续阶段:层间压缩和滑移、层内屈曲和成键、以及结构弛豫阶段(图1)。通过详细分析超快光致相变过程中的电子直接激发和声子诱导激发情况(图2),指出载流子倍增效应与特定声子选择性激发是石墨结构转变的主要驱动力。他们还提出,被散射到σ导带的高能电子在引起石墨的面内不稳定性方面起到了关键作用(图3)。此外,高能量的激光是实现石墨层间不可逆压缩和成键的必要条件。该研究提出了从石墨到金刚石的光致非绝热转变途径,为超快激光激发控制量子材料结构相变提供了新的微观图像和理论依据。超快激光调控方法在许多领域具有巨大的应用潜力,例如纳米结构加工、光学存储器和器件制造。
该文近期发表于npj Computational Materials 9,: 76(2023),英文标题与摘要如下,点击左下角“阅读原文”可以自由获取论文PDF。
Driving forces for ultrafast laser-induced sp2 to sp3 structural transformation in graphite
Chenchen Song, Mengxue Guan, Yunzhe Jia, Daqiang Chen, Jiyu Xu, Cui Zhang & Sheng Meng
Understanding the microscopic mechanism of photoinduced sp2-to-sp3 structural transformation in graphite is a scientific challenge with great importance. Here, the ultrafast dynamics and characteristics of laser-induced structural transformation in graphite are revealed by non-adiabatic quantum dynamic simulations. Under laser irradiation, graphite undergoes an interlayer compression and sliding stage, followed by a key period of intralayer buckling and interlayer bonding to form an intermediate sp2-sp3 hybrid structure, before completing the full transformation to hexagonal diamond. The process is driven by the cooperation of charge carrier multiplication and selective phonon excitations through electron-phonon interactions, in which photoexcited hot electrons scattered into unoccupied high-energy conduction bands play a key role in the introduction of in-plane instability in graphite. This work identifies a photoinduced non-adiabatic transition pathway from graphite to diamond and shows far-reaching implications for designing optically controlled structural phase transition in materials.
转自:“知社学术圈”微信公众号
如有侵权,请联系本站删除!