英文原题:Electro-Fenton and induced electro-Fenton as versatile wastewater treatment processes for decontamination and nutrient removal without byproduct formation
通讯作者:Yang Yang,Clarkson University;Siwen Wang,Clarkson University
作者:Luz Estefanny Quispe Cardenas, Parker John Deptula, Cynthia Soraya Huerta, Chonglin Zhu, Yinyin Ye, Siwen Wang, Yang Yang
克拉克森大学杨阳教授, 王斯文教授团队对电芬顿系列工艺过程及机理进行深入的研究。研究表明电芬顿(EF: electro-Fenton)和诱导电芬顿(I-EF: induced electro-Fenton)工艺能在低能耗下同步去除含氯废水中有机物、病原菌和磷酸盐,且不产生卤代副产物。
电化学技术在离散式水处理、难降解有机物处理和危险废物处理方面有巨大的潜力。然而,横亘在规模产业化道路上的数个障碍亟待解决:
(1) 电化学氧化(EO:electrochemical oxidation)工艺仍需在降低电极成本和延长寿命方面取得突破。
(2) EO过程会无选择性地氧化污染物和卤离子(Cl-, Br-),而后者是产生卤代消毒副(DBPs)的前驱体。(此处笔者强调:DPBs控制属于饮用水安全风险管控范畴,而EO水处理的应用场景往往不是饮用水回用。因在,尽管本文重点之一是研究DBPs的生成机制,未来对EO技术的研发不应受限于对DPBs的顾虑。)
近年来,一种另辟蹊径的电化学水处理思路是利用阴极氧还原反应产生双氧水(H2O2),再引入催化剂转化H2O2为羟基自由基·OH。在过去的五年内,已有大量基于原子尺度设计的先进催化剂见报道。笔者认为,直接通过铁牺牲阳极或诱导电极释放亚铁离子、通过传统Fenton反应激活H2O2仍然是目前最可行、成本最低的方案。然而,以往见刊的论文往往在引言中诟病EF工艺铁泥生成的问题,却罕见对该现象深入调查以及确定该“问题”是否真的是问题。笔者认为,EF生成铁泥可作为絮凝剂促进去除疏水污染物和病原体,并可通过与磷酸盐反应生成磷酸铁以达到除磷的目的。
基于上述观点,我们系统比较了多种电化学水处理工艺(电合成H2O2 (HPP)、电絮凝(EC)、EF、 I-EF和EO; Figure 1a)的性能。如Figure 1b所示,我们构筑的HPP反应器可以在高电流效率(>88%)下产生H2O2。引入牺牲阳极(EF)或诱导电极(I-EF)后,H2O2被转化成自由基。
Figure 1. (a) Configurations of electrolytic cells investigated in this study. (b) Evolution of H2O2 in various modes. The areas of all electrodes are 6 cm2, except 12.5 cm2 for GDE. The electrolyte is 10 mM NaClO4 (60 mL) at pH = 6.5.
我们进一步利用苯甲酸(BA: Benzoic acid)为探针分子研究了自由基产生与淬灭机制(Figure 2)。本研究的原创理论贡献在于开发了一套涵盖47个重要基元反应的动力学模型。模型经实验数据校正后,可准确预测在氯离子存在下多种自由基和H2O2的产生与淬灭。
Figure 2. EF degradation of 1 mM BA in 10 mM NaClO4 (60 mL; pH = 4.0) in the absence or presence of 1.8 mM Cl- at (a) 30 mA and (b) 60 mA in EF mode. H2O2 evolution in HPP and EF processes at (c) 30 and (d) 60 mA. At both currents, the potentials of the IrOx anode for HPP mode and LCS anode for EF mode were stabilized at ~1.5 and ~0.9 VRHE, respectively. Model simulation on radical speciation at (e) 30 and (f) 60 mA when 1.8 mM Cl- was present. Dots are experimental data, while lines are modeling results. The data set denoted by “FIT” means the data were fed to the kinetic models to calibrate specific rate constants; those tagged as “SIM” are results predicted by the calibrated kinetic models without manual intervention.
探针实验和动力学模型给出的核心结论是: EF和I-EF过程中阴极产生的H2O2除了能被转化为·OH外,还能湮灭游离氯(HClO/OCl-)和氯自由基(Cl·)。后两者的湮灭反应对抑制DBPs的生成起到重要作用。此外,氯离子并不会改变EF和I-EF过程中自由基的产量和分配比例。
我们进一步将EF和I-EF工艺应用于处理家庭污水。Figure 3a揭示了铁泥产生的混凝作用对COD去除的贡献。Figure 3b证明EF和I-EF工艺能通过自由基氧化路径去除微污染物carbamazepine (CMZ)。更重要的是,如Figure 3c所示,EF和I-EF工艺能在氧化有机物的同时快速去除水中总磷。
本文还证明了EF和I-EF工艺能快速杀灭污水中细菌(E. coli和E. durans)与病毒(MS2和Phi6)。我们对处理前后污水中典型DPBs(chlorate、perchlorate、 trihalomethanes和 haloacetic acids)进行定量。结果表明,EO处理会产生mg/L浓度级别的DBPs,而在EF和I-EF工艺中没有观测到DBPs生成。这是由于H2O2淬灭了氯自由基和自由氯,与探针实验和动力学模型研究得出的结论一致。更多论证详见原文,此处不再赘述。
Figure 3. (a) COD removal in septic wastewater by EF, I-EF, and EC processes. Contributions of oxidation and coagulation to COD removal were marked in blue and red, respectively. Time marks represent the residence times. (b) Removal of CMZ (C0 = 1 µM) spiked in septic wastewater by EF, I-EF, and EC. (c) Phosphate removal in septic wastewater by EF and I-EF. All experiments were performed at 30 mA. The surface areas of IrOx anodes (in HPP and I-EF), induced LCS plate (I-EF), LCS anode (EC), and SS cathode (EC) were kept at 6 cm2. GDE cathode used in EF and I-EF has an area of 12.5 cm2. The volume of wastewater was 60 mL.
本文进一步比较了多种电化学水处理工艺对处理家庭废水的能耗。结果显示EF和I-EF技术的能耗比EO低一个数量级(Figure 4a)。最后,本文论证了铁牺牲电极的损耗可以通过法拉第定律预测(Figure 4b),并对不同电流量下铁泥的产量进行定量(Figure 4c)。初步的经济成本分析表明,在家庭废水处理这一应用情境中,铁泥的产量可控、处理成本可接受。铁泥问题不应成为EF规模化应用的制约因素。
Figure 4. (a) Energy consumption of four electrochemical processes to remove >50% COD in septic wastewater. (b) Weigh loss of LCS anode for EF and induced LCS plate for I-EF in 10 mM NaClO4 electrolyte. (c) Sludge generation in 10 mM NaClO4 electrolyte by EF and I-EF.
结论:
EF系列工艺可实现同步去除有机物、病原体和磷酸盐。与EO工艺相比,EF工艺具有低能耗和无副产物产生等优势。EF工艺在离散式污水处理、控制病原体传播和遏制水体富营养化方面有广阔的应用前景。
致谢:
本研究受比尔及梅琳达·盖茨基金会资助。相关论文发表在ACS ES&T Engineering。克拉森大学杨阳教授、王斯文教授为本文共同通讯作者。
转自:“ACS美国化学会”微信公众号
如有侵权,请联系本站删除!