投稿问答最小化  关闭

万维书刊APP下载

华中农大近期科学研究进展

2023/7/5 9:35:51  阅读:46 发布者:

揭示一因多效基因调控

植物生长发育和产量的新机制

近日,华中农业大学生命科学技术学院、作物遗传改良全国重点实验室、湖北洪山实验室水稻团队熊立仲教授课题组联合闫俊杰研究员课题组在国际期刊Nature Plants在线发表了题为“Serine protease NAL1 exerts pleiotropic functions through degradation of TOPLESS-related corepressor in rice”的研究论文,揭示了一因多效基因NAL1调控水稻生长发育及产量的分子机制。

水稻是全球重要的粮食作物之一,随着世界人口的增长,人类对粮食的需求量不断增大。根系是植物吸收水分和养分的重要器官,对水稻产量起着决定性作用。团队前期通过对水稻种质资源群体进行根系性状的全基因组关联分析,定位到一个基因NAL1,该基因也被穗粒数等产量性状所定位,是一因多效基因,但是,其一因多效的分子机制尚不清楚。

课题组通过结构生物学的方法解析了NAL1蛋白的晶体结构,发现NAL1蛋白以六聚体的形式存在,两个三聚体上下两层叠加。结构比对发现NAL1DEG类丝氨酸蛋白酶的同源性最高,因此课题组进一步寻找NAL1的蛋白酶底物。利用免疫共沉淀联合质谱技术鉴定得到了TOPLESS家族转录共抑制子,通过体内和体外的蛋白互作实验确认了二者的互作,发现NAL1通过其C端的EAR motif模块招募结合OsTPR2。进一步通过一系列生化实验证明NAL1促进了OsTPR2的降解。课题组创建了NAL1敲除系背景下的OsTPR2的减量表达系的双突材料,表型考察显示双突材料可部分回补NAL1敲除系在根、叶片和穗上的表型。这表明NAL1的一因多效功能部分依赖于OsTPR2。为了进一步解析NAL1-OsTPR2基因模块的下游信号通路,ChIP-qPCR以及RT-qPCR显示该基因模块调控生长素和独脚金内酯信号途径基因的表达。

NAL1在水稻育种中是否具有利用价值呢?带着这一猜想,团队成员将NAL1的优异单倍型导入到南方主栽品种黄华占,构建了导入系。表型鉴定发现导入系具有更大的根系、叶片、穗等表型,最终提高了水稻产量。

综上所述,该研究揭示了丝氨酸蛋白酶NAL1通过降解转录共抑制子OsTPR2,影响生长素和独脚金内酯信号途径基因的组蛋白乙酰化水平,进而影响这些基因的表达,最终调控水稻的生长发育以及产量。该研究为水稻育种提供了有价值的基因资源和材料。

华中农业大学生命科学技术学院、作物遗传改良全国重点实验室和湖北省洪山实验室李文静博士和闫俊杰研究员为论文共同第一作者,熊立仲教授为文章通讯作者,殷平教授也参与本研究工作。

论文链接:

http://news.hzau.edu.cn/2023/0626/67072.shtml

揭示植物调控复制胁迫应答的新机制

精确的DNA复制是细胞增殖的基础。然而,DNA复制会受到各种因素(例如DNA损伤、dNTP缺乏等)的干扰,导致DNA复制胁迫,从而威胁基因组稳定性。为了应对这些挑战,细胞会激活复制胁迫应答机制,包括诱导细胞周期停滞、稳定复制叉、增加dNTP的合成等。

进化上高度保守的蛋白激酶ATR是真核生物应答复制胁迫的核心调控蛋白之一。但是植物ATR调控复制胁迫应答的机制还不太清楚。在前期的研究中,华中农业大学严顺平/王利利团队发现植物ATR通过下游蛋白激酶WEE1来抑制E3泛素连接酶FBL17 (SOAT1)、多效调节蛋白PRL1 (SOAT2)和翻译抑制因子GCN20 (SOAT3)来暂停细胞周期进程。

dNTPsDNA复制和DNA修复的原料。核糖核苷酸还原酶(RNR)是催化dNTP合成的限速酶。在动物和酵母中的研究发现RNR在转录和转录后水平受到精准调控。拟南芥RNR1个大亚基(RNR1) 和3个小亚基(TSO2RNR2ARNRN2B)组成,其中TSO2起主要作用。TSO2的突变会导致植物生长和DNA修复的缺陷。目前,植物调控RNR的机制尚不清楚。

Cell reports 发表研究论文

近日,华中农业大学严顺平/王利利团队在国际期刊Cell Reports发表了题为“Protein kinase ATR inhibits E3 ubiquitin ligase CRL4PRL1 to stabilize ribonucleotide reductase in response to replication stress”的研究论文,发现ATR除了诱导细胞周期停滞之外,还可以通过增强dNTP合成来调控复制胁迫应答。

在该研究中,作者通过激活标签法筛选拟南芥atr突变体的抑制子(soat),发现soat4可以部分抑制atr突变体对复制胁迫的超敏感性。进一步研究发现,soat4的表型是TSO2表达量增加引起的;TSO2PRL1相互作用;PRL1通过Cullin4介导的E3泛素连接酶CRL4PRL1多聚泛素化TSO2,促进TSO2通过26S蛋白酶体途径被降解。结合之前的研究, 作者认为ATR-WEE1通过负调控CRL4PRL1提高了TSO2的蛋白稳定性,从而促进dNTP的合成。综上所述,本研究发现了植物调控复制胁迫应答的新模块ATR-PRL1-RNR,揭示了植物RNR蛋白在翻译后水平被调控的机制。鉴于这些蛋白在真核生物中的高度保守性,ATR-PRL1-RNR调控模块也可能在其他真核生物中发挥作用。

ATR-PRL1-RNR工作模型

该团队的博士研究生包伟怡为论文的第一作者,严顺平教授和王利利研究员为共同通讯作者。

论文链接:

https://doi.org/10.1016/j.celrep.2023.112685

发表微生物修复稻田土壤锑污染的研究成果

近日,华中农业大学生命科学技术学院、农业微生物资源发掘与利用全国重点实验室环境微生物课题组以Toxic response of antimony in the Comamonas testosteroni and its application in soil antimony bioremediation”为题,在国际学术期刊Environment International上发表论文,阐明了微生物菌剂降低土壤锑毒性及锑生物有效性的机制,从而有效减少水稻锑积累。

锑是一种剧毒的环境污染物,锑污染地区土壤锑含量远高于正常的背景浓度。锑能通过食物链进入人体,导致癌变、心肌衰竭、肝坏死等疾病,严重威胁人类的健康。水稻可以过量富集锑,食用锑富集大米会严重威胁人类生命健康,寻找有效的锑修复方法成为亟待解决的问题,但水稻中锑氧化微生物驱动的锑修复机制及技术缺乏研究。国内外尚未报道微生物影响锑生物有效性和在水稻中驱动锑修复的机制。

锑固定与氧化菌剂JL40减少水稻锑积累

该研究评估了Comamonas testosteroni JL40在锑污染生物修复中的应用潜力。发现菌株JL40通过细胞内积累/结合、胞外固定、Sb(III)氧化、ROS清除、Sb(III)外排和生物被膜产生等途径响应锑的毒性。基于菌株JL40Sb(III)的固定和氧化功能,采用盆栽试验研究菌株JL40对锑的生物修复潜力。结果表明,在不同程度的锑污染土壤中,施加菌剂JL40后水稻糙米中锑积累量显著降低,达到安全水平(<2.40 mg/kg)。此外, JL40菌株可以提高植物和土壤的健康,提高水稻产量。利用BCREDTA法对根际土壤中锑分级提取和单步提取,发现菌株JL40在土壤环境中可以起到钝化和氧化锑的作用。在水稻盆栽过程中,菌株JL40接种30天后仍能保持在103 CFU/g以上。本研究为细菌在锑污染修复中的应用奠定了重要基础。

锑外排操纵子AntRCA模式图

Sb(III)转录调控因子AntR蛋白结构

博士研究生罗雄为本文第一作者,李明顺副教授为通讯作者。

该工作是课题组2020年和2021年在Science of the Total EnvironmentMolecular Microbiology发表论文之后又一与土壤锑污染修复相关的研究成果。

论文链接:

https://doi.org/10.1016/j.envint.2023.108040

在多功能纳米材料吸附降解环境中

抗菌药物及其机制研究中取得新进展

近日,华中农业大学动物科学技术学院、动物医学院和农业微生物资源发掘与利用全国重点实验室精准兽药创制与环境消减技术开发团队在多功能纳米材料吸附降解环境中抗菌药物及其机制研究中取得新进展,相关以成果以Imprinting defective Fe-based metal-organic frameworks as an excellent platform for selective Fenton/persulfate degradation of LEX: removal performance and mechanism”为题,发表在Applied Catalysis B: Environmental上。

团队探究了以黄豆苷元为模版,基于分子印迹技术与铁基金属有机骨架材料相结合而制备的对氟喹诺酮类抗菌药具备高吸附性和过氧化氢/过硫酸盐活化性能的多功能催化剂材料,并系统分析了该催化剂基于不同氧化体系对水环境中氟喹诺酮类抗菌药的高效降解机制。

畜禽对抗菌药物的吸收代谢不完全,导致大量抗菌药以原型形式随粪便和尿液排入环境中,对生态环境及人类健康造成巨大威胁。因此,抗菌药物作为一类新兴有机污染物在自然水环境中的出现引起了国内外学者的高度关注。如何高效去除水环境中的抗菌药物是传统处理技术无法完全解决的科学难题。与传统处理技术相比,芬顿氧化和过硫酸盐氧化等高级氧化工艺因具有较强的氧化能力和降解效率在有机污染物的去除中受到了广泛的重视。

活化双氧水或过硫酸盐产生的活性氧的催化效率和利用效率是影响芬顿/过硫酸盐氧化降解性能的两个关键因素。协同吸附和高级氧化工艺可以提高活性氧的利用效率,实现抗菌药物的快速富集和降解。本研究合理设计和构建了一种黄豆苷元虚拟印迹的缺陷型铁基金属有机骨架材料(Fe-MOF-DMIP),通过模板分子的引入和洗脱诱导Fe-MOF-DMIP形成缺陷,使其具有更大容纳能力的孔道。结合DFT计算,具有金属螯合能力的黄豆苷元的引入增强了催化降解过程中Fe (III)/Fe (II)循环,Fe-MOF-DMIP与降解化合物之间的π-π共轭、氢键相互作用,提升了催化剂的活化和降解效率。本研究进一步从氟喹诺酮类抗菌药的降解路径、自由基产生、自由基自耦合/交联耦合以及自由基半衰期等角度,对Fe-MOF-DMIP在芬顿氧化和过硫酸盐氧化体系中降解机制进行了系统深入的研究。此外,本研究从pH稳定性、循环使用性能、抗干扰能力和经济成本等角度,对Fe-MOF-DMIP的应用前景进行了系统评估。该研究为多功能催化剂的开发以及水环境净化中合理选择高级氧化工艺提供了科学参考资料。

1. Fe-MOF-DMIP在芬顿氧化和过硫酸盐氧化体系下的作用机制示意图

华中农业大学动物科学技术学院、动物医学院博士研究生赵迎为本论文第一作者,陈冬梅教授和谢书宇教授为共同通讯作者,课题组多位同学共同参与。

链接:

https://doi.org/10.1016/j.envint.2023.108040

本文转载自华中农业大学

转自:“植物生物技术Pbj”微信公众号

如有侵权,请联系本站删除!


  • 万维QQ投稿交流群    招募志愿者

    版权所有 Copyright@2009-2015豫ICP证合字09037080号

     纯自助论文投稿平台    E-mail:eshukan@163.com