投稿问答最小化  关闭

万维书刊APP下载

脑科学研究 | 罗冬根团队发现“一细胞,两递质,两视觉功能”的神经机制

2023/12/27 9:04:21  阅读:42 发布者:

神经细胞经特殊的连接点——突触联接起来所组成的神经环路是神经系统(脑)的基本功能单元,其细胞间信号的传递通过释放某种化学物质(神经递质)来实现,不同的神经细胞释放不同的递质,从而行使不同的功能。

视觉最重要的功能是分辨图像(图像视觉),而另一些功能(非图像视觉)虽与图像生成并无直接关联,但起着重要的辅助作用(如对昼夜节律的调节等)。尽管研究者们很早就认识到,视觉系统的这两种功能分别通过两类感光细胞来实现:一类解析局部反差,另一种解析整体光亮度;同时近年的研究表明,产生局部反差的感光细胞也能传递整体光亮度,但其神经机制尚不清楚。

近日,北京大学生命科学学院、麦戈文脑研究所、定量生物学中心、北大-清华生命科学联合中心罗冬根团队在 Nature 期刊发表了题为:A single photoreceptor splits perception and entrainment by cotransmission 的研究论文,该研究报道了在果蝇中局部反差和整体亮度信号的分离可通过同一感光细胞同时释放两种递质来实现。

虽然果蝇使用的复眼不同于脊椎动物眼,但它和后者有着非常保守的视觉功能和机制。得益于其丰富的可用于标记和操纵视觉通路的遗传工具,果蝇是当前视觉研究的一种重要模式动物。

在这一研究中,罗冬根团队应用国际领先的果蝇大脑神经元的单电极及多电极膜片钳电生理记录技术揭秘了复眼调节生物节律的神经机制。发现果蝇复眼的一种感光细胞同时释放组胺和乙酰胆碱作为神经递质,其中组胺介导精细的运动视觉,而乙酰胆碱则通过作用于该团队新发现的“巨无霸”伞形神经元(按其形态特征aMe-innervatingmulticolumnar and arcuate shape,命名为AMA神经元)来调节昼夜节律。

每个AMA神经元的树突像巨伞一样延伸覆盖了整个视觉脑区,且不同AMA间通过突触连接在一起,从而整合大视野光亮度信息。这些是实现非图像视觉功能所需的理想特性。进而,组胺和乙酰胆碱间还存在相互调控。这些重要的发现提示,果蝇视觉信号的分离源于视觉信号发生的最初阶段(光感受细胞以一个细胞释放两种递质),是一种新的视觉信号传递模式(图1)。

1R8感光细胞分离图像和非图像视觉的神经机制

在哺乳动物中,有些视觉信号的分离用“一递质,两受体”方式,即使用一种递质和有相反电信号的两种受体。该工作揭示了在某递质(如果蝇的组胺)无相反电信号受体的条件下,感光细胞高效分离视觉信号的策略,极大促进了领域内对视觉形成和生物节律的理解。值得注意的是,哺乳动物很多脑区也有“一细胞,两递质”现象,但其生理功能却还鲜为人知,所以该工作还为“一细胞,两递质”的研究提供了新的范式和思路。

来源:生物世界

转自:“威斯腾生命科学研究院”微信公众号

如有侵权,请联系本站删除!


  • 万维QQ投稿交流群    招募志愿者

    版权所有 Copyright@2009-2015豫ICP证合字09037080号

     纯自助论文投稿平台    E-mail:eshukan@163.com