Npj Comput. Mater.: 图神经网络—钙钛矿材料可合成性预测
2022/7/26 11:16:16 阅读:240 发布者:
新型功能材料的发掘是材料研究中最为核心的问题。随着近年来高性能计算能力的持续提升和第一性原理计算技术的成熟,基于第一原理的高通量计算为新材料发现领域带来了重要变革。数以十万计的未曾开发的新材料被预测出来。例如,当前主流的计算材料数据库Materials Project已经包含了146300余条材料信息。这些计算材料数据库为新型功能材料的开发提供了前所未有的海量空间。然而,这些计算预测的材料是否稳定,实验上能否合成出来?回答这一问题对于实验开展极为重要,成为近年来材料预测的一个重要的努力方向。
针对上述问题,来自韩国和英国的联合团队发展了基于图神经网络的机器学习方案,用于准确预测新材料的可合成性。他们在技术上结合了正向非标记学习、领域特定学习和转移学习来构建预测模型,并以钙钛矿这一无机材料中重要的种类为例开展研究。具体地,首先采用Materials Project数据库中的所有材料来训练深度学习模型。第二步将包含Materials Project在内的三种计算数据库结合,选取其中的钙钛矿材料继续开展转移学习模型,由此构建出针对钙钛矿材料稳定性的预测模型。基于该方法,他们从11964种计算预测的钙钛矿材料中筛选出了962种可以合成的体系。通过文献搜索,他们确定其中179已有实验报道,初步验证了预测的可靠性。作为该模型的应用演示,他们预测了可合成的新型富锂以及金属卤化物钙钛材料,分别作为快离子导体以及光学候选材料。相比已有钙钛矿材料稳定性预测模型,该方法不受材料类型制约,可预测包含卤族、氧化物、硫化物等所有类型的钙钛矿及反钙钛矿材料。由于其具有一定的普适性,该模型有望推广用于其他结构体系,实现材料可合成性预测的通用方法。
该文近期发表于npj Computational Materials 8, 71 (2022),英文标题与摘要如下
Perovskite synthesizability using graph neural networks
Geun Ho Gu, Jidon Jang, Juhwan Noh, Aron Walsh, Yousung Jung
Perovskite is an important material type in geophysics and for technologically important applications. However, the number of synthetic perovskites remains relatively small. To accelerate the high-throughput discovery of perovskites, we propose a graph neural network model to assess their synthesizability. Our trained model shows a promising 0.957 out-of-sample true positive rate, significantly improving over empirical rule-based methods. Further validation is established by demonstrating that a significant portion of the virtual crystals that are predicted to be synthesizable have already been indeed synthesized in literature, and those with the lowest synthesizability scores have not been reported. While previous empirical strategies are mainly applicable to metal oxides, our model is general and capable of predicting the synthesizability across all classes of perovskites, including chalcogenide, halide, and hydride perovskites, as well as anti-perovskites. We apply the method to identify synthesizable perovskite candidates for two potential applications, the Li-rich ion conductors and metal halide optical materials that can be tested experimentally.
转自:知社学术圈
如有侵权,请联系本站删除!