投稿问答最小化  关闭

万维书刊APP下载

Npj Comput. Mater.: 局部原子邻域描述符—非数据驱动无损压缩

2023/5/19 9:33:10  阅读:78 发布者:

计算能力的提高使得运用量子力学方法对材料进行精确建模成为可能,从而可以有效地研究材料的化学转化。然而,计算模拟的一个主要缺陷在于其在很大程度上受到建模尺寸和时间尺度的限制。

经验势方法使得计算速度加快了几个数量级,同时计算成本与原子数量成线性关系。近年来,机器学习势的出现让精确度和可移植性都有了显著的提升。势的拟合以及更加广泛的材料机器学习均需对材料结构进行数学描述,并将其作为模型的输入。然而,目前使用的许多原子描述符在规模上随着化学元素数量S的增加而急剧增大,因而在应用上受到极大的限制。例如,体序描述符(如三体SOAP功率谱和多体序ACE)的长度随着NS的ν 次方增大,其中ν +1是体序,N是密度展开式中径向基函数的数量。

来自英国剑桥大学工程系的James P. Darby等,介绍了两种非数据驱动的方法来压缩SOAP功率谱。首先,通过考虑功率谱中密度展开式系数的恢复能力,证明了对于SN都能进行无损压缩,因此描述符的长度可以从N2S2数量级降低至NS数量级。其次,通过引入一个普适的SOAP内核,将不依赖于元素的总密度和径向投影相结合也实现了压缩。最后,作者使用数值测试评估了这些压缩后的描述符在各种数据集中的性能。该研究提出的压缩思想可以与以往的技术相结合,这对于在给定情况下选择合适的压缩方法至关重要。

该文近期发表于npj Computational Materials 8166(2022)

转自:“知社学术圈”微信公众号

如有侵权,请联系本站删除!


  • 万维QQ投稿交流群    招募志愿者

    版权所有 Copyright@2009-2015豫ICP证合字09037080号

     纯自助论文投稿平台    E-mail:eshukan@163.com